arrayType, mapType column and functions

In PySpark, ArrayType and MapType are used to define complex data structures within a DataFrame schema.

ArrayType column, and functions,

ArrayType allows you to store and work with arrays, which can hold multiple values of the same data type.

sample dataframe:
id, numbers|
1, [1, 2, 3]
2, [4, 5, 6]
3, [7, 8, 9]

explode ()

“explode” a given array into individual new rows using the explode function, Offen use it to flatten JSON.

from pyspark.sql.functions import explode

# Explode the 'numbers' array into separate rows
exploded_df = df.withColumn("number", explode(df.numbers))
display(explode_df)
==output==
id	numbers	number
1	[1,2,3]	1
1	[1,2,3]	2
1	[1,2,3]	3
2	[4,5,6]	4
2	[4,5,6]	5
2	[4,5,6]	6
3	[7,8,9]	7
3	[7,8,9]	8
3	[7,8,9]	9
split ()

Split strings based on a specified delimiter, return a array type.

from pyspark.sql.functions import split
df.withColumn(“Name_Split”, split(df[“Name”], “,”))

sample dataframe
+————–+
| Name |
+————–+
| John,Doe |
| Jane,Smith |
| Alice,Cooper |
+————–+

from pyspark.sql.functions import split
# Split the 'Name' column by comma
df_split = df.withColumn("Name_Split", split(df["Name"], ","))

==output==
+-------------+----------------+
| Name        | Name_Split     |
+-------------+----------------+
| John,Doe    | [John, Doe]    |
| Jane,Smith  | [Jane, Smith]  |
| Alice,Cooper| [Alice, Cooper]|
+-------------+----------------+
array ()

Creates an array column.

from pyspark.sql.functions import array, col
data=[(1,2,3),(4,5,6)]
schema=['num1','num2','num3']
df1=spark.createDataFrame(data,schema)
df1.show()
# create a new column - numbers, array type. elements use num1,num2,num3   
df1.withColumn("numbers",array(col("num1"),col("num2"),col("num3"))).show()

==output==
+----+----+----+
|num1|num2|num3|
+----+----+----+
|   1|   2|   3|
|   4|   5|   6|
+----+----+----+

#new array column "numbers" created
+----+----+----+-----------+
|num1|num2|num3| numbers   |
+----+----+----+-----------+
|   1|   2|   3| [1, 2, 3] |
|   4|   5|   6| [4, 5, 6] |
+----+----+----+-----------+
array_contains ()

Checks if an array contains a specific element.

from pyspark.sql.functions import array_contains
array_contains(array, value)

sample dataframe
+—+———————–+
|id |fruits |
+—+———————–+
|1 |[apple, banana, cherry]|
|2 |[orange, apple, grape] |
|3 |[pear, peach, plum] |
+—+———————–+

from pyspark.sql.functions import array_contains

# Using array_contains to check if the array contains 'apple'
df.select("id", array_contains("fruits", "apple").alias("has_apple")).show()

==output==
+---+----------+
| id|has_apple |
+---+----------+
|  1|      true|
|  2|      true|
|  3|     false|
+---+----------+
getItem()

Access individual elements of an array by their index using the getItem() method

# Select the second element (index start from 0) of the 'numbers' array
df1 = df.withColumn("item_1_value",   df.numbers.getItem(1))
display(df1)
==output==
id	numbers	      item_1_value
1	[1,2,3]	       2
2	[4,5,6]	       5
3	[7,8,9]	       8
size ()

Returns the size of the array.

from pyspark.sql.functions import size

# Get the size of the 'numbers' array
df.select(size(df.numbers)).show()

==output==
+-------------+
|size(numbers)|
+-------------+
|            3|
|            3|
|            3|
+-------------+
sort_array()

Sorts the array elements.

sort_array(col: ‘ColumnOrName’, asc: bool = True)

If `asc` is True (default) then ascending and if False then descending. if asc=True, can be omitted.

from pyspark.sql.functions import sort_array
df.withColumn("numbers", sort_array("numbers")).show()
==output==
ascending 
+---+---------+
| id|  numbers|
+---+---------+
|  1|[1, 2, 3]|
|  2|[4, 5, 6]|
|  3|[7, 8, 9]|
+---+---------+
df.select(sort_array("numbers", asc=False).alias("sorted_desc")).show()
==output==
descending 
+-----------+
|sorted_desc|
+-----------+
|  [3, 2, 1]|
|  [6, 5, 4]|
|  [9, 8, 7]|
+-----------+
concat ()

concat() is used to concatenate arrays (or strings) into a single array (or string). When dealing with ArrayType, concat() is typically used to combine two or more arrays into one.

from pyspark.sql.functions import concat
concat(*cols)

sample DataFrames
+—+——+——+
|id |array1|array2|
+—+——+——+
|1 | [a, b] | [x, y]|
|2 | [c] | [z] |
|3 | [d, e] | null |
+—+——-+——+

from pyspark.sql.functions import concat

# Concatenating array columns
df_concat = df.withColumn("concatenated_array", concat(col("array1"), col("array2")))
df_concat.show(truncate=False)

==output==
+---+------+------+------------------+
|id |array1|array2|concatenated_array|
+---+------+------+------------------+
|1  |[a, b]|[x, y]|[a, b, x, y]      |
|2  |[c]   |[z]   |[c, z]            |
|3  |[d, e]|null  |null              |
+---+------+------+------------------+

Handling null Values

If any of the input columns are null, the entire result can become null. This is why you’re seeing null instead of just the non-null array.

To handle this, you can use coalesce() to substitute null with an empty array before performing the concat(). coalesce() returns the first non-null argument. Here’s how you can modify your code:

from pyspark.sql.functions import concat, coalesce, lit

# Define an empty array for the same type
empty_array = array()

# Concatenate with null handling using coalesce
df_concat = df.withColumn(
    "concatenated_array",
    concat(coalesce(col("array1"), empty_array), coalesce(col("array2"), empty_array))
)

df_concat.show(truncate=False)

==output==
+---+------+------+------------------+
|id |array1|array2|concatenated_array|
+---+------+------+------------------+
|1  |[a, b]|[x, y]|[a, b, x, y]      |
|2  |[c]   |[z]   |[c, z]            |
|3  |[d, e]|null  |[d, e]            |
+---+------+------+------------------+
array_zip ()

Combines arrays into a single array of structs.


☰ MapType column, and functions

MapType is used to represent map key-value pair similar to python Dictionary (Dic)

from pyspark.sql.types import MapType, StringType, IntegerType
# Define a MapType
my_map = MapType(StringType(), IntegerType(), valueContainsNull=True)

Parameters:

  • keyType: Data type of the keys in the map. You can use PySpark data types like StringType(), IntegerType(), DoubleType(), etc.
  • valueType: Data type of the values in the map. It can be any valid PySpark data type
  • valueContainsNull: Boolean flag (optional). It indicates whether null values are allowed in the map. Default is True.

sample dataset
# Sample dataset (Product ID and prices in various currencies)
data = [
(1, {“USD”: 100, “EUR”: 85, “GBP”: 75}),
(2, {“USD”: 150, “EUR”: 130, “GBP”: 110}),
(3, {“USD”: 200, “EUR”: 170, “GBP”: 150}),
]


sample dataframe
+———-+————————————+
|product_id|prices |
+———-+————————————+
|1 |{EUR -> 85, GBP -> 75, USD -> 100} |
|2 |{EUR -> 130, GBP -> 110, USD -> 150}|
|3 |{EUR -> 170, GBP -> 150, USD -> 200}|
+———-+————————————+

Accessing map_keys (), map_values ()

Extract keys (currency codes) and values (prices):

from pyspark.sql.functions import col, map_keys, map_values
# Extract map keys and values
df.select(
    col("product_id"),
    map_keys(col("prices")).alias("currencies"),
    map_values(col("prices")).alias("prices_in_currencies")
).show(truncate=False)

==output==
+----------+---------------+--------------------+
|product_id|currencies     |prices_in_currencies|
+----------+---------------+--------------------+
|1         |[EUR, GBP, USD]|[85, 75, 100]       |
|2         |[EUR, GBP, USD]|[130, 110, 150]     |
|3         |[EUR, GBP, USD]|[170, 150, 200]     |
+----------+---------------+--------------------+
exploder ()

Use explode () to flatten the map into multiple rows, where each key-value pair from the map becomes a separate row.

from pyspark.sql.functions import explode
# Use explode to flatten the map
df_exploded = df.select("product_id", explode("prices").alias("currency", "price")).show()

==output==
+----------+--------+-----+
|product_id|currency|price|
+----------+--------+-----+
|         1|     EUR|   85|
|         1|     GBP|   75|
|         1|     USD|  100|
|         2|     EUR|  130|
|         2|     GBP|  110|
|         2|     USD|  150|
|         3|     EUR|  170|
|         3|     GBP|  150|
|         3|     USD|  200|
+----------+--------+-----+
Accessing specific elements in the map

To get the price for a specific currency (e.g., USD) for each product:

from pyspark.sql.functions import col, map_keys, map_values
# Access the value for a specific key in the map 
df.select(
    col("product_id"),
    col("prices").getItem("USD").alias("price_in_usd")
).show(truncate=False)

==output==
+----------+------------+
|product_id|price_in_usd|
+----------+------------+
|1         |100         |
|2         |150         |
|3         |200         |
+----------+------------+
filtering

filter the rows based on conditions involving the map values

from pyspark.sql.functions import col, map_keys, map_values
# Filter rows where price in USD is greater than 150
df.filter(col("prices").getItem("USD") > 150).show(truncate=False)

==output==
+----------+------------------------------------+
|product_id|prices                              |
+----------+------------------------------------+
|3         |{EUR -> 170, GBP -> 150, USD -> 200}|
+----------+------------------------------------+
map_concat ()

Combines two or more map columns by merging their key-value pairs.

from pyspark.sql.functions import map_concat, create_map, lit

# Define the additional currency as a new map using create_map()
additional_currency = create_map(lit("CAD"), lit(120))

# Add a new currency (e.g., CAD) with a fixed price to all rows
df.withColumn(
    "updated_prices",
    map_concat(col("prices"), additional_currency)
).show(truncate=False)

==output==
+----------+------------------------------------+
|product_id|prices                              |
+----------+------------------------------------+
|3         |{EUR -> 170, GBP -> 150, USD -> 200}|
+----------+------------------------------------+

withColumnRenamed(), drop(), show()

withColumnRenamed ()

withColumnRenamed(), Rename an existing column in a DataFrame

DataFrame.withColumnRenamed(existingName, newName)

existingName: The current name of the column you want to rename.
newName: The new name for the column.

drop ()

In PySpark, you can drop columns from a DataFrame using the drop() method. Here’s a breakdown of the syntax, options, parameters, and examples for dropping columns in PySpark.

Syntax

DataFrame.drop(*cols)

*cols: One or more column names (as strings) that you want to drop from the DataFrame. You can pass these as individual arguments or a list of column names.

# Drop single column 'age'
df_dropped = df.drop("age")

# Drop multiple columns 'id' and 'age'
df_dropped_multiple = df.drop("id", "age")

# Dropping Columns Using a List of Column Names
# Define columns to drop
columns_to_drop = ["id", "age"]

# Drop columns using list
df_dropped_list = df.drop(*columns_to_drop)
df_dropped_list.show()
Show()

By default, display 20 row, truncate 20 characters

df.show(n=10, truncate= True, vertical=True)

Read a delta table from Blob/ADLS and write a delta table to Blob/ADLS

If a Delta table is saved in Blob Storage or Azure Data Lake Storage (ADLS), you access it using the file path rather than a cataloged name (like in Unity Catalog). Here’s how to read from and write to Delta tables stored in Blob Storage or ADLS in Spark SQL and PySpark.

Reading Delta Tables from Blob Storage or ADLS

To read Delta tables from Blob Storage or ADLS, you specify the path to the Delta table and use the delta. format.

Syntax

# Spark SQL
SELECT * FROM delta.`/mnt/path/to/delta/table`caution: " ` " - backticks# pyspark
df = spark.read.format("delta").load("path/to/delta/table")
  

Writing Delta Tables to Blob Storage or ADLS

When writing to Delta tables, use the delta format and specify the path where you want to store the table.

Spark SQL cannot directly write to a Delta table in Blob or ADLS (use PySpark for this). However, you can run SQL queries and insert into a Delta table using INSERT INTO:

# SparkSQL
INSERT INTO delta.`/mnt/path/to/delta/table`SELECT * FROM my_temp_table
caution: " ` " - backticks

# PySpark 
df.write.format("delta").mode("overwrite").save("path/to/delta/table")

Options and Parameters for Delta Read/Write

Options for Reading Delta Tables:

You can configure the read operation with options like:

  • mergeSchema: Allows schema evolution if the structure of the Delta table changes.
  • spark.sql.files.ignoreCorruptFiles: Ignores corrupt files during reading.
  • timeTravel: Enables querying older versions of the Delta table.
df = spark.read.format("delta").option("mergeSchema", "true").load("path/to/delta/table")
df.show()

Options for Writing Delta Tables:

mode: Controls the write mode.

  • overwrite: Overwrites the existing data.
  • append: Adds to existing data.
  • ignore: Ignores the write if data exists.
  • errorifexists: Defaults to throwing an error if data exists.

partitionBy: Partition the data by one or more columns.

overwriteSchema: Overwrites the schema of an existing Delta table if there’s a schema change.

df.write.format("delta").mode("overwrite") \
    .option("overwriteSchema", "true") \
    .partitionBy("column_name") \
    .save("path/to/delta/table")

Time Travel and Versioning with Delta (PySpark)

Delta supports time travel, allowing you to query previous versions of the data. This is very useful for audits or retrieving data at a specific point in time.

# Read from a specific version
df = spark.read.format("delta").option("versionAsOf", 2).load("path/to/delta/table")
df.show()

# Read data at a specific timestamp
df = spark.read.format("delta").option("timestampAsOf", "2024-10-01").load("path/to/delta/table")
df.show()

Conclusion:

  • Delta is a powerful format that works well with ADLS or Blob Storage when used with PySpark.
  • Ensure that you’re using the Delta Lake library to access Delta features, like ACID transactions, schema enforcement, and time travel.
  • For reading, use .format("delta").load("path").
  • For writing, use .write.format("delta").save("path").

from_json(), to_json()

from_json()

from_json() is a function used to parse a JSON string into a structured DataFrame format (such as StructType, ArrayType, etc.). It is commonly used to deserialize JSON strings stored in a DataFrame column into complex types that PySpark can work with more easily.

Syntax

from_json(column, schema, options={})

Parameters

column: The column containing the JSON string. Can be a string that refers to the column name or a column object.

schema

Specifies the schema of the expected JSON structure.
Can be a StructType (or other types like ArrayType depending on the JSON structure).

options

  • allowUnquotedFieldNames: Allows field names without quotes. (default: false)
  • allowSingleQuotes: Allows parsing single-quoted JSON strings. (default: true)
  • allowNumericLeadingZeros: Allows leading zeros in numbers. (default: false)
  • allowBackslashEscapingAnyCharacter: Allows escaping any character with a backslash. (default: false)
  • mode: Controls how to handle malformed records
    PERMISSIVE: The default mode that sets null values for corrupted fields.
    DROPMALFORMED: Discards rows with malformed JSON strings.
    FAILFAST: Fails the query if any malformed records are found.
Sample DF
+----------------------------+
|json_string                 |
+----------------------------+
|{"name": "John", "age": 30} |
|{"name": "Alice", "age": 25}|
+----------------------------+


from pyspark.sql.types import StructType, StructField, StringType, IntegerType, StructType
from pyspark.sql.functions import from_json, col
# Define the schema for the nested JSON
schema = StructType([
    StructField("name", StructType([
        StructField("first", StringType(), True),
        StructField("last", StringType(), True)
    ]), True),
    StructField("age", IntegerType(), True)
])

# Parse the JSON string into structured columns
df_parsed = df.withColumn("parsed_json", from_json(col("json_string"), schema))

# Display the parsed JSON
df_parsed.select("parsed_json.*").show(truncate=False)
+--------+---+
| name   |age|
+--------+---+
|{John, Doe}|30|
|{Alice, Smith}|25|
+--------+---+

to_json()

to_json() is a function that converts a structured column (such as one of type StructType, ArrayType, etc.) into a JSON string.

Syntax

to_json(column, options={})

Parameters

column: The column you want to convert into a JSON string.
The column should be of a complex data type, such as StructType, ArrayType, or MapType.
Can be a column name (as a string) or a Column object.

options

  • pretty: If set to true, it pretty-prints the JSON output.
  • dateFormat: Specifies the format for DateType and TimestampType columns (default: yyyy-MM-dd).
  • timestampFormat: Specifies the format for TimestampType columns (default: yyyy-MM-dd'T'HH:mm:ss.SSSXXX).
  • ignoreNullFields: When set to true, null fields are omitted from the resulting JSON string (default: true).
  • compression: Controls the compression codec used to compress the JSON output, e.g., gzip, bzip2.
sample data
+--------------------------------------------------------+
|json_string                                             |
+--------------------------------------------------------+
|{"name": {"first": "John", "last": "Doe"}, "age": 30}   |
|{"name": {"first": "Alice", "last": "Smith"}, "age": 25}|
+--------------------------------------------------------+


from pyspark.sql.types import StructType, StructField, StringType, IntegerType, StructType
from pyspark.sql.functions import from_json, to_json, col# Parse the JSON string into structured columns
df_parsed = df.withColumn("parsed_json", from_json(col("json_string"), schema))
df_parsed.show(truncate=False)

+--------------------------------------------------------+--------------------+
|json_string                                             |parsed_json         |
+--------------------------------------------------------+--------------------+
|{"name": {"first": "John", "last": "Doe"}, "age": 30}   |{{John, Doe}, 30}   |
|{"name": {"first": "Alice", "last": "Smith"}, "age": 25}|{{Alice, Smith}, 25}|
+--------------------------------------------------------+--------------------+

Comparison: split (), concat (), array_zip (), and explode ()

Featuresplit()concat()array_zip()explode()
DescriptionSplits a string column into an array of substrings based on a delimiter.Concatenates multiple arrays or strings into a single array or string.Zips multiple arrays element-wise into a single array of structs.Flattens an array into multiple rows, with one row per element in the array.
Input TypeStringArrays/StringsArraysArray
Output TypeArray of StringsArray or StringArray of StructsMultiple Rows (with original columns)
Key Use CasesSplitting strings based on delimiters (e.g., splitting comma-separated values).Merging multiple arrays into one, or multiple strings into one.Aligning data from multiple arrays element-wise, treating each set of elements as a row (struct).Flattening arrays for row-by-row processing (e.g., after zipping or concatenating arrays).
Examplesplit(col("string_col"), ",")["a", "b", "c"]concat(col("array1"), col("array2"))["a", "b", "x", "y"]array_zip(col("array1"), col("array2"))[{'a', 1}, {'b', 2}]explode(col("array_col")) → Converts an array into separate rows.
Handling Different LengthsNot applicableIf input arrays have different lengths, the shorter ones are concatenated as-is.If input arrays have different lengths, the shorter ones are padded with null.Not applicable. Converts each element into separate rows, regardless of length.
Handling null valuesWill split even if the string contains null values (but may produce empty strings).If arrays contain null, concat() still works, returning the non-null elements.Inserts null values into the struct where input arrays have null for a corresponding index.Preserves null elements during the explosion but still creates separate rows.

Breakdown:

  • split() is used to break a single string into an array of substrings.
  • concat() merges arrays or strings, resulting in a single array or string.
  • array_zip() aligns elements from multiple arrays, creating an array of structs.
  • explode() takes an array and converts it into multiple rows, one for each array element.

StructType(), StructField()

StructType (), StructField ()

StructType () in PySpark is part of the pyspark.sql.types module and it is used to define the structure of a DataFrame schema.
StructField () is a fundamental part of PySpark’s StructType, used to define individual fields (columns) within a schema. A StructField specifies the name, data type, and other attributes of a column in a DataFrame schema.

StructType Syntax

from pyspark.sql.types import StructType, StructField, StringType, IntegerType 
schema = StructType([ 
StructField("name", StringType(), True), 
StructField("age", IntegerType(), True) 
])

StructField Syntax


StructField(name, dataType, nullable=True, metadata=None)

Parameter

fields (optional): A list of StructField objects that define the schema. Each StructField object specifies the name, type, and whether the field can be null.

Key Components

  • name: The name of the column.
  • dataType: The data type of the column (e.g., StringType(), IntegerType(), DoubleType(), etc.).
  • nullable: Boolean flag indicating whether the field can contain null values (True for nullable).

Common Data Types Used in StructField

  • StringType(): Used for string data.
  • IntegerType(): For integers.
  • DoubleType(): For floating-point numbers.
  • LongType(): For long integers.
  • ArrayType(): For arrays (lists) of values.
  • MapType(): For key-value pairs (dictionaries).
  • TimestampType(): For timestamp fields.
  • BooleanType(): For boolean values (True/False).
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, IntegerType

# Initialize Spark session
spark = SparkSession.builder.appName("Example").getOrCreate()

# Define schema using StructType
schema = StructType([
    StructField("name", StringType(), True),
    StructField("age", IntegerType(), True)
])

# Create DataFrame using the schema
data = [("John", 30), ("Alice", 25)]
df = spark.createDataFrame(data, schema)
df.show()
+-----+---+
| name|age|
+-----+---+
| John| 30|
|Alice| 25|
+-----+---+

Nested Schema

StructType can define a nested schema. For example, a column in the DataFrame might itself contain multiple fields.

nested_schema = StructType([
    StructField("name", StringType(), True),
    StructField("address", StructType([
        StructField("street", StringType(), True),
        StructField("city", StringType(), True)
    ]), True)
])

contains(), collect(), transform(), udf(), udf for sql

contains ()

The contains() function in PySpark is used to check if a string column contains a specific substring. It’s typically used in a filter() or select() operation to search within the contents of a column and return rows where the condition is true.

Syntax

Column.contains(substring: str)

Key Points

  • contains() is case-sensitive by default. For case-insensitive matching, use it with lower() or upper().
  • It works on string columns only. For non-string columns, you would need to cast the column to a string first.
sample DF
+-------+----------+
|   Name|Department|
+-------+----------+
|  James|     Sales|
|Michael|     Sales|
| Robert|        IT|
|  Maria|        IT|
+-------+----------+

# Filter rows where 'Department' contains 'Sales'
filtered_df = df.filter(df["Department"].contains("Sales"))
filtered_df.show()
+-------+----------+
|   Name|Department|
+-------+----------+
|  James|     Sales|
|Michael|     Sales|
+-------+----------+

# Add a new column 'Is_Sales' based on whether 'Department' contains 'Sales'
from pyspark.sql.functions import when
df_with_flag = df.withColumn(
    "Is_Sales",
    when(df["Department"].contains("Sales"), "Yes").otherwise("No")
)

df_with_flag.show()
+-------+----------+--------+
|   Name|Department|Is_Sales|
+-------+----------+--------+
|  James|     Sales|     Yes|
|Michael|     Sales|     Yes|
| Robert|        IT|      No|
|  Maria|        IT|      No|
+-------+----------+--------+

#Case-Insensitive Search
# Search for 'sales' in a case-insensitive manner
from pyspark.sql.functions import lower
df_lower_filtered = df.filter(lower(df["Department"]).contains("sales"))
df_lower_filtered.show()
+-------+----------+
|   Name|Department|
+-------+----------+
|  James|     Sales|
|Michael|     Sales|
+-------+----------+

collect ()

The collect () function simply gathers all rows from the DataFrame or RDD and returns them as a list of Row objects. It does not accept any parameters.

Syntax

DataFrame.collect()
not any parameter at all

Key Points

  • Use on Small Data: Since collect() brings all the data to the driver, it should be used only on small datasets. If you try to collect a very large dataset, it can cause memory issues or crash the driver..
  • For large datasets, consider using alternatives like take(n), toPandas(), show(n)
sample DF
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+

# Collect all rows from the DataFrame
collected_data = df.collect()

# Access all rows
print(collected_data)
[Row(Name='Alice', Age=25), Row(Name='Bob', Age=30), Row(Name='Charlie', Age=35)]

# Access a row
print(collected_data[0])
Row(Name='Alice', Age=25)

# Access a cell
print(collected_data[0][0])
Alice

# Display the collected data
for row in collected_data:
    print(row)
==output==
Row(Name='Alice', Age=25)
Row(Name='Bob', Age=30)
Row(Name='Charlie', Age=35)

# Filter and collect
filtered_data = df.filter(df["Age"] > 30).collect()

# Process collected data
for row in filtered_data:
    print(f"{row['Name']} is older than 30.")
==output==
Charlie is older than 30.


# Access specific columns from collected data
for row in collected_data:
    print(f"Name: {row['Name']}, Age: {row.Age}")
==output==
Name: Alice, Age: 25
Name: Bob, Age: 30
Name: Charlie, Age: 35



transform ()

The transform () function in PySpark is a higher-order function introduced to apply custom transformations to columns in a DataFrame. It allows you to perform a transformation function on an existing column, returning the transformed data as a new column. It is particularly useful when working with complex data types like arrays or for applying custom logic to column values.

Syntax

df1 = df.transform(my_function)

Parameters

my_function: a python function

Key point

The transform() method takes a function as an argument. It automatically passes the DataFrame (in this case, df) to the function. So, you only need to pass the function namemy_function"

sample DF
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+

from pyspark.sql.functions import upper
#Declare my function
def addTheAge(mydf):    
    return mydf.withColumn('age',mydf.age + 2)

def upcaseTheName(mydf):
    reture mydf.withColumn("Name", upper(mydf.Name))

#transforming: age add 2 years
df1=df.transform(addTheAge)
df1.show()
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 27|
|    Bob| 32|
|Charlie| 37|
+-------+---+

The transform () method takes a function as an argument. It automatically passes the DataFrame (in this case, df) to the function. So, you only need to pass the function name "my_function".


#transforming to upcase
df1=df.transform(upcaseTheName)
df1.show()
+-------+---+
|   Name|Age|
+-------+---+
|  ALICE| 25|
|    BOB| 30|
|CHARLIE| 35|
+-------+---+

#transforming to upcase and age add 2 years
df1=df.transform(addTheAge).transform(upcaseTheName)
df1.show()
+-------+---+
|   Name|Age|
+-------+---+
|  ALICE| 27|
|    BOB| 32|
|CHARLIE| 37|
+-------+---+


udf ()

The udf (User Defined Function) allows you to create custom transformations for DataFrame columns using Python functions. You can use UDFs when PySpark’s built-in functions don’t cover your use case or when you need more complex logic.

Syntax

from pyspark.sql.functions import udf
from pyspark.sql.types import DataType
# Define a UDF function ,
# Register the function as a UDF
my_udf = udf(py_function, returnType)

Parameters

  • py_function: A Python function you define to transform the data.
  • returnType: PySpark data type (e.g., StringType(), IntegerType(), DoubleType(), etc.) that indicates what type of data your UDF returns.
    • StringType(): For returning strings.
    • IntegerType(): For integers.
    • FloatType(): For floating-point numbers.
    • BooleanType(): For booleans.
    • ArrayType(DataType): For arrays.
    • StructType(): For structured data.

Key point

You need to specify the return type for the UDF, as PySpark needs to understand how to handle the results of the UDF.

sample DF
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+


from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Define a Python function
def to_upper(name):
    return name.upper()

# Register the function as a UDF, specifying the return type as StringType
uppercase_udf = udf(to_upper, StringType())

# Apply the UDF using withColumn
df_upper = df.withColumn("Upper_Name", uppercase_udf(df["Name"]))

df_upper.show()
+-------+---+----------+
|   Name|Age|Upper_Name|
+-------+---+----------+
|  Alice| 25|     ALICE|
|    Bob| 30|       BOB|
|Charlie| 35|   CHARLIE|
+-------+---+----------+

# UDF Returning Boolean
from pyspark.sql.functions import udf
from pyspark.sql.types import BooleanType
# Define a Python function
def is_adult(age):
    return age > 30

# Register the UDF
is_adult_udf = udf(is_adult, BooleanType())

# Apply the UDF
df_adult = df.withColumn("Is_Adult", is_adult_udf(df["Age"]))

# Show the result
df_adult.show()
+-------+---+--------+
|   Name|Age|Is_Adult|
+-------+---+--------+
|  Alice| 25|   false|
|    Bob| 30|   false|
|Charlie| 35|    true|
+-------+---+--------+

# UDF with Multiple Columns (Multiple Arguments)
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Define a Python function that concatenates two columns
def concat_name_age(name, age):
    return f"{name} is {age} years old"

# Register the UDF
concat_udf = udf(concat_name_age, StringType())

# Apply the UDF to multiple columns
df_concat = df.withColumn("Description", concat_udf(df["Name"], df["Age"]))

# Show the result
df_concat.show()
+-------+---+--------------------+
|   Name|Age|         Description|
+-------+---+--------------------+
|  Alice| 25|Alice is 25 years...|
|    Bob| 30| Bob is 30 years old|
|Charlie| 35|Charlie is 35 yea...|
+-------+---+--------------------+

spark.udf.register(), Register for SQL query

in PySpark, you can use spark.udf.register() to register a User Defined Function (UDF) so that it can be used not only in DataFrame operations but also in SQL queries. This allows you to apply your custom Python functions directly within SQL statements executed against your Spark session.

Syntax

spark.udf.register(“registered_pyFun_for_sql”, original_pyFun, returnType)

parameter

  • registered_pyFun_for_sql: The name of the UDF, which will be used in SQL queries.
  • original_pyFun: The original Python function that contains the custom logic.
  • returnType: The return type of the UDF, which must be specified (e.g., StringType(), IntegerType()).
smaple df
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+

from pyspark.sql import SparkSession
from pyspark.sql.types import StringType

# Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")

# Define a Python function
def original_myPythonFun(name):
    return name.upper()

# Register the function as a UDF for SQL with the return type StringType
spark.udf.register("registered_pythonFun_for_sql"\
                    , original_myPythonFun\
                    , StringType()\
                )

# Use the UDF - "registered_pythonFun_for_sql" in a SQL query
result = spark.sql(\
    "SELECT Name, registered_pythonFun_for_sql(Name) AS Upper_Name \
        FROM people"\
    )
result.show()
+-------+----------+
|   Name|Upper_Name|
+-------+----------+
|  Alice|     ALICE|
|    Bob|       BOB|
|Charlie|   CHARLIE|
+-------+----------+

we can directly use SQL style with magic %sql

%sql
SELECT Name
      , registered_pythonFun_for_sql(Name) AS Upper_Name 
  FROM people
+-------+----------+
|   Name|Upper_Name|
+-------+----------+
|  Alice|     ALICE|
|    Bob|       BOB|
|Charlie|   CHARLIE|
+-------+----------+
A complex python function declares, udf register, and apply example

Sample DataFrame

#Sample DataFrame
data = [    (1, 2, 3, 9, "alpha", "beta", "gamma"),    (4, 5, 6, 8, "delta", "epsilon", "zeta")]

df = spark.createDataFrame(data, ["col1", "col2", "col3", "col9", "str1", "str2", "str3"])
df.show()
+----+----+----+----+-----+-------+-----+
|col1|col2|col3|col9| str1|   str2| str3|
+----+----+----+----+-----+-------+-----+
|   1|   2|   3|   9|alpha|   beta|gamma|
|   4|   5|   6|   8|delta|epsilon| zeta|
+----+----+----+----+-----+-------+-----+

Define the Python function to handle multiple columns and scalars

# Define the Python function to handle multiple columns and scalars

def pyFun(col1, col2, col3, col9, int1, int2, int3, str1, str2, str3):
    # Example business logic
    re_value1 = col1 * int1 + len(str1)
    re_value2 = col2 + col9 + len(str2)
    re_value3 = col3 * int3 + len(str3)
    value4 = re_value1 + re_value2 + re_value3

    # Return multiple values as a tuple
    return re_value1, re_value2, re_value3, value4

Define the return schema for the UDF

# Define the return schema for the UDF

return_schema = StructType([
    StructField("re_value1", IntegerType(), True),
    StructField("re_value2", IntegerType(), True),
    StructField("re_value3", IntegerType(), True),
    StructField("value4", IntegerType(), True)
])

Register the UDF

# register the UDF

# for SQL use this 
# spark.udf.register("pyFun_udf", pyFun, returnType=return_schema)

pyFun_udf = udf(pyFun, returnType=return_schema)

Apply the UDF to the DataFrame, using ‘lit()’ for constant values

# Apply the UDF to the DataFrame, using 'lit()' for constant values

df_with_udf = df.select(
    col("col1"),
    col("col2"),
    col("col3"),
    col("col9"),
    col("str1"),
    col("str2"),
    col("str3"),
    pyFun_udf(
        col("col1"),
        col("col2"),
        col("col3"),
        col("col9"),
        lit(10),  # Use lit() for the constant integer values
        lit(20),
        lit(30),
        col("str1"),
        col("str2"),
        col("str3")
    ).alias("result")
)

# Show the result
df_with_udf.show(truncate=False)

==output==
+----+----+----+----+-----+-------+-----+------------------+
|col1|col2|col3|col9|str1 |str2   |str3 |result            |
+----+----+----+----+-----+-------+-----+------------------+
|1   |2   |3   |9   |alpha|beta   |gamma|{15, 15, 95, 125} |
|4   |5   |6   |8   |delta|epsilon|zeta |{45, 20, 184, 249}|
+----+----+----+----+-----+-------+-----+------------------+

Access the “result”

from pyspark.sql.functions import col
df_result_re_value3 = df_with_udf.select ('col1', 'result',col('result').re_value3.alias("re_value3"))
df_result_re_value3.show()
+----+------------------+---------+
|col1|            result|re_value3|
+----+------------------+---------+
|   1| {15, 15, 95, 125}|       95|
|   4|{45, 20, 184, 249}|      184|
+----+------------------+---------+

udf register for sql using

“sample dataframe”, “declare python function”, “Define the return schema for the UDF” are the same. only register udf different.

# register the UDF

spark.udf.register("pyFun_udf", pyFun, returnType=return_schema)

# create a temporary view for SQL query
df.createOrReplaceTempView("my_table")

notebook uses magic %sql


%sql
SELECT col1, col2, col3, col9, str1, str2, str3,            pyFun_udf(col1, col2, col3, col9, 10, 20, 30, str1, str2, str3) AS result    
FROM my_table

==output==
col1	col2	col3	col9	str1	str2	str3	result
1	2	3	9	alpha	beta	gamma	{"re_value1":15,"re_value2":15,"re_value3":95,"value4":125}
4	5	6	8	delta	epsilon	zeta	{"re_value1":45,"re_value2":20,"re_value3":184,"value4":249}

Join(), union(), unionAll(), unionByName(), fill(), fillna()

join()

The join() method is used to combine two DataFrames based on a common column or multiple columns. This method is extremely versatile, supporting various types of SQL-style joins such as inner, outer, left, and right joins.

Syntax

DataFrame.join(other, on=None, how=None)

Parameters

  • other: The other DataFrame to join with the current DataFrame.
  • on: A string or a list of column names on which to join. This can also be an expression (using col() or expr()).

how: The type of join to perform. It can be one of

  • 'inner': Inner join (default). Returns rows that have matching values in both DataFrames.
  • 'outer' or 'full': Full outer join. Returns all rows from both DataFrames, with null values for missing matches.
  • 'left' or 'left_outer': Left outer join. Returns all rows from the left DataFrame and matched rows from the right DataFrame. Unmatched rows from the right DataFrame result in null values.
  • 'right' or 'right_outer': Right outer join. Returns all rows from the right DataFrame and matched rows from the left DataFrame. Unmatched rows from the left DataFrame result in null values.
  • 'left_semi': Left semi join. Returns only the rows from the left DataFrame where the join condition is satisfied.
  • 'left_anti': Left anti join. Returns only the rows from the left DataFrame where no match is found in the right DataFrame.
  • 'cross': Cross join (Cartesian product). Returns the Cartesian product of both DataFrames, meaning every row from the left DataFrame is combined with every row from the right DataFrame.
sample datasets
df1
+-------+-------+
|   name|dept_id|
+-------+-------+
|  Alice|      1|
|    Bob|      2|
|Charlie|      3|
+-------+-------+
df2
+-------+-----------+
|dept_id|  dept_name|
+-------+-----------+
|      1|         HR|
|      2|    Finance|
|      4|Engineering|
+-------+-----------+

# Union the two DataFrames
df_union = df1.union(df2)

==output==
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
|  David| 40|
+-------+---+

# Inner join (default)
df_inner = df1.join(df2, on="dept_id")

==output==
+-------+-----+---------+
|dept_id| name|dept_name|
+-------+-----+---------+
|      1|Alice|       HR|
|      2|  Bob|  Finance|
+-------+-----+---------+

Others are the same as SQL. new, let’s focus on Semi and Anti Joins

  • Left Semi Join: Only returns rows from the left DataFrame that have matches in the right DataFrame.
  • Left Anti Join: Only returns rows from the left DataFrame that don’t have matches in the right DataFrame.
# Left semi join
df_left_semi = df1.join(df2, on="dept_id", how="left_semi")
df_left_semi.show()

==output==
+-------+-----+
|dept_id| name|
+-------+-----+
|      1|Alice|
|      2|  Bob|
+-------+-----+
Charlie's dep_Id=3. it does not appear in df2, so skipped it.


# Left anti join
df_left_anti = df1.join(df2, on="dept_id", how="left_anti")
df_left_anti.show()

==output==
+-------+-------+
|dept_id|   name|
+-------+-------+
|      3|Charlie|
+-------+-------+
Only Charlie, dep_Id=3, does not appear in df2, so return it only.

union ()

The union() method is used to combine two DataFrames with the same schema (i.e., same number and type of columns). This operation concatenates the rows of the two DataFrames, similar to a SQL UNION operation, but without removing duplicate rows (like UNION ALL in SQL).

Syntax

DataFrame.union(other)

Key Points

  • Schema Compatibility: Both DataFrames must have the same number of columns, and the data types of the corresponding columns must match.
  • Union Behavior: Unlike SQL’s UNION which removes duplicates, union() in PySpark keeps all rows, including duplicates. This is equivalent to SQL’s UNION ALL.
  • Order of Rows: The rows from the first DataFrame will appear first, followed by the rows from the second DataFrame.
  • Column Names and Data Types Must Match: The column names don’t need to be identical in both DataFrames, but their positions and data types must match. If the number of columns or the data types don’t align, an error will be raised.
  • Union with Different Column Names: Even though column names don’t need to be the same, the columns are merged by position, not by name. If you attempt to union() DataFrames with different column orders, the results could be misleading. Therefore, it’s important to make sure the schemas match.
sample datasets
df1
+-----+---+
| name|age|
+-----+---+
|Alice| 25|
|  Bob| 30|
+-----+---+

df2:
+-------+---+
|   name|age|
+-------+---+
|Charlie| 35|
|  David| 40|
+-------+---+

# Union the two DataFrames
df_union = df1.union(df2)

==output==
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
|  David| 40|
+-------+---+

unionByName ()

The unionByName() method in PySpark is similar to the union() method but with a key distinction: it merges two DataFrames by aligning columns based on column names, rather than their positions.

Syntax

DataFrame.unionByName(other, allowMissingColumns=False)

Parameters

  • other: The other DataFrame to be unioned with the current DataFrame.
  • allowMissingColumns: A boolean flag (False by default). If True, this allows the union of DataFrames even if one DataFrame has columns that are missing in the other. The missing columns in the other DataFrame will be filled with null values.

Key Points

  • Column Name Alignment: The method aligns columns by name, not by their position, which makes it flexible for combining DataFrames that have different column orders.
  • Handling Missing Columns: By default, if one DataFrame has columns that are missing in the other, PySpark will throw an error. However, setting allowMissingColumns=True allows unioning in such cases, and missing columns in one DataFrame will be filled with null values in the other.
  • Duplicate Rows: Just like union(), unionByName() does not remove duplicates, and the result includes all rows from both DataFrames.
sample datasets
df1
+-----+---+
| name|age|
+-----+---+
|Alice| 25|
|  Bob| 30|
+-----+---+

df2:
+-------+----+
|age| name|
+---+--------+
| 35| Charlie|
| 40| David  |
+---+--------+

# Union the two DataFrames
df_union = df1.unionByName(df2)

==output==
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
|  David| 40|
+-------+---+

Handling Missing Columns with allowMissingColumns=True

sample df
+-----+---+
| name|age|
+-----+---+
|Alice| 25|
+-----+---+

+---+-------+-------+
|age|   name|  title|
+---+-------+-------+
| 35|Charlie|Manager|
+---+-------+-------+

# Union by name with missing columns allowed
# Alice does not has "title"  
df_union_missing_columns = df1.unionByName(df2, allowMissingColumns=True)

==output==
+-------+---+-------+
|   name|age|  title|
+-------+---+-------+
|  Alice| 25|   null|
|Charlie| 35|Manager|
+-------+---+-------+

Multiple Columns and Different Schemas

Sample Df
+-----+---+--------+
| name|age|    city|
+-----+---+--------+
|Alice| 25|New York|
+-----+---+--------+

+---+----+
|age|name|
+---+----+
| 30| Bob|
+---+----+

# Union by name with missing columns allowed
df_union = df1.unionByName(df2, allowMissingColumns=True)

==output==
+-----+---+--------+
| name|age|    city|
+-----+---+--------+
|Alice| 25|New York|
|  Bob| 30|    null|
+-----+---+--------+

unionAll ()

unionAll() was an older method used to combine two DataFrames without removing duplicates. However, starting from PySpark 2.0, unionAll() has been deprecated and replaced by union(). The behavior of unionAll() is now identical to that of union() in PySpark.

look at union () in detail.


fillna (), df.na.fill()

fillna() is a method used to replace null (or missing) values in a DataFrame with a specified value. Return new DataFrame with null values replaced by the specified value.

Syntax

DataFrame.fillna(value, subset=None)

df.na.fill(value, subset=None)

df.na.fill(value, subset=None) has the result of df.fillna().

Parameters

  • value: The value to replace null with. It can be a scalar value (applied across all columns) or a dictionary (to specify column-wise replacement values). The type of value should match the type of the column you are applying it to (e.g., integers for integer columns, strings for string columns).
  • subset: Specifies the list of column names where the null values will be replaced.
    If not provided, the replacement is applied to all columns.
sample df
+-------+----+----+
|   name| age|dept|
+-------+----+----+
|  Alice|  25|null|
|    Bob|null|  HR|
|Charlie|  30|null|
+-------+----+----+

df.printSchema()
root
 |-- name: string (nullable = true)
 |-- age: long (nullable = true)
 |-- dept: string (nullable = true)

"age" is long, "dept" is string

# Fill null values with default values for all columns
df_filled = df.fillna(0)

==output==
+-------+---+----+
|   name|age|dept|
+-------+---+----+
|  Alice| 25|null|
|    Bob|  0|  HR|
|Charlie| 30|null|
+-------+---+----+
Bob's age is filled with 0, since it is "long", and "Dept" column did not fill, still remains "null".

Handle different Columns with different data type

# Fill nulls in the 'age' column with 0 and in the 'dept' column with "Unknown"
df_filled_columns = df.fillna({"age": 0, "dept": "Unknown"})

df_filled_columns.show()

==output==
+-------+---+-------+
|   name|age|   dept|
+-------+---+-------+
|  Alice| 25|Unknown|
|    Bob|  0|     HR|
|Charlie| 30|Unknown|

Fill Nulls in Specific Subset of Columns

# Fill null values only in the 'age' column
df_filled_age = df.fillna(0, subset=["age"])

df_filled_age.show()
+-------+---+----+
|   name|age|dept|
+-------+---+----+
|  Alice| 25|null|
|    Bob|  0|  HR|
|Charlie| 30|null|
+-------+---+----+


select()

select() is used to project a subset of columns from a DataFrame or to create new columns based on expressions. It returns a new DataFrame containing only the selected columns or expressions.

Syntax

DataFrame.select(*cols)
df.select(“id”, “name”)
df.select(df.id, df.name)
df.select(df[“id”], df[“name”])
df.select(“name”, col(“age”) + 5)

sample dataframe
+-------+---+---------+
|   name|age|     dept|
+-------+---+---------+
|  Alice| 25|       HR|
|    Bob| 30|  Finance|
|Charlie| 35|Marketing|
+-------+---+---------+
# Select specific columns (name and age)
df_selected = df.select("name", "age")
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+


# Select and transform columns, a new column added.
from pyspark.sql.functions import col

df_transformed = df.select("name", df.age,col("age") + 5)
+-------+---+---------+
|   name|age|(age + 5)|
+-------+---+---------+
|  Alice| 25|       30|
|    Bob| 30|       35|
|Charlie| 35|       40|
+-------+---+---------+

# Using Expressions Inside select()
from pyspark.sql.functions import expr

# Select columns using expressions
df_expr = df.select("name", expr("age + 10").alias("age_plus_10"))
+-------+-----------+
|   name|age_plus_10|
+-------+-----------+
|  Alice|         35|
|    Bob|         40|
|Charlie|         45|
+-------+-----------+

# Select All Columns
df_all_columns = df.select("*")
+-------+---+---------+
|   name|age|     dept|
+-------+---+---------+
|  Alice| 25|       HR|
|    Bob| 30|  Finance|
|Charlie| 35|Marketing|
+-------+---+---------+

condition: when (), otherwise (), expr()

if - else - " logic implementing

In PySpark, there isn’t an explicit “if-else" statement construct like in regular Python. Instead, PySpark provides several ways to implement conditional logic using functions such as when (), otherwise (), withColumn(), expr (), UDF etc.

using when (), expr() look at following sections. now focus on UDF to implement “if — then — else –” logic”.

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Define a Python function for age classification
def classify_age(age):
    if age >= 18:
        return 'Adult'
    else:
        return 'Minor'

# Register the function as a UDF
classify_age_udf = udf(classify_age, StringType())

# Create the DataFrame
data = [(1, 25), (2, 12), (3, 40)]
df = spark.createDataFrame(data, ["id", "age"])
+---+---+
| id|age|
+---+---+
|  1| 25|
|  2| 12|
|  3| 40|
+---+---+

# Apply the UDF to create a new column with the if-else logic
df = df.withColumn("age_group", classify_age_udf(df["age"]))

df.show()
+---+---+---------+
| id|age|age_group|
+---+---+---------+
|  1| 25|    Adult|
|  2| 12|    Minor|
|  3| 40|    Adult|
+---+---+---------+

In this example:

  • The function classify_age behaves like a Python if-else statement.
  • The UDF (classify_age_udf) applies this logic to the DataFrame.

when (), otherwise ()

when function in PySpark is used for conditional expressions, similar to SQL’s CASE WHEN clause.

Syntax

from pyspark.sql.functions import when
when(condition, value).otherwise(default_value)

Parameters

  • condition: A condition that returns a boolean (True/False). If this condition is true, the function will return the specified value.
  • value: The value to return when the condition is true.
  • otherwise(default_value): An optional method that specifies the default value to return when the condition is false.

sample dataframe

+—+—–+
| id|score|
+—+—–+
| 1| 92|
| 2| 85|
| 3| 98|
| 4| 59|
+—+—–+

from pyspark.sql.functions import when, col

# Multiple Conditions with AND/OR/NOT Logic
# AND : &
# OR : |
# NOT : ~
df = df.withColumn("grade", 
        when(col("score") >= 90, "A") 
        .when((col("score") >= 80) & (col("score") < 90), "B") 
        .when((col("score") >= 70) & (col("score") < 80), "C") 
        .otherwise("F"))
==output==
+---+-----+-----+
| id|score|grade|
+---+-----+-----+
|  1|   92|    A|
|  2|   85|    B|
|  3|   98|    A|
|  4|   59|    F|
+---+-----+-----+

expr ()

The expr () function allows you to use SQL expressions as a part of the DataFrame transformation logic.

Syntax

expr ()
from pyspark.sql.functions import expr
expr(sql_expression)

Parameters:

  • sql_expression: A string containing a SQL-like expression to be applied to the DataFrame. It can contain any valid SQL operations, such as arithmetic operations, column references, conditional logic, or function calls.

sample dataframe

+—+—–+
| id | value|
+—+—–+
| 1| 10|
| 2| 20|
| 3| 30|
+—+—–+

from pyspark.sql.functions import expr

# Use expr() to apply arithmetic operations
df = df.withColumn("double_value", expr("value * 2"))

==output==
+---+-----+------------+
| id|value|double_value|
+---+-----+------------+
|  1|   10|          20|
|  2|   20|          40|
|  3|   30|          60|
+---+-----+------------+

# Apply conditional logic using expr()
df = df.withColumn("category", expr("CASE WHEN value >= 20 THEN 'High' ELSE 'Low' END"))

df.show()
+---+-----+------------+--------+
| id|value|double_value|category|
+---+-----+------------+--------+
|  1|   10|          20|     Low|
|  2|   20|          40|    High|
|  3|   30|          60|    High|
+---+-----+------------+--------+

# Use SQL function CONCAT
df = df.withColumn("full_category", expr("CONCAT(category, '_Category')"))

df.show()
+---+-----+------------+--------+-------------+
| id|value|double_value|category|full_category|
+---+-----+------------+--------+-------------+
|  1|   10|          20|     Low| Low_Category|
|  2|   20|          40|    High|High_Category|
|  3|   30|          60|    High|High_Category|
+---+-----+------------+--------+-------------+

selectExpr ()

The selectExpr() method allows you to directly select columns or apply SQL expressions on multiple columns simultaneously, similar to SQL’s SELECT statement.

Syntax

from pyspark.sql.functions import selectExpr

df.selectExpr(*sql_expressions)

Parameters:

  • sql_expression: A list of SQL-like expressions (as strings) that define how to transform or select columns. Each expression can involve selecting a column, renaming it, applying arithmetic, or adding conditions using SQL syntax.

sample dataframe

+—+—–+
| id | value|
+—+—–+
| 1| 10|
| 2| 20|
| 3| 30|
+—+—–+

from pyspark.sql.functions import selectExpr

# Select specific columns and rename them using selectExpr()
df = df.selectExpr("id", "value * 2 as double_value", "value as original_value")

df.show()

==output==
+---+------------+--------------+
| id|double_value|original_value|
+---+------------+--------------+
|  1|          20|            10|
|  2|          40|            20|
|  3|          60|            30|
+---+------------+--------------+

# Use CASE WHEN to categorize values
df = df.selectExpr("id", "value", "CASE WHEN value >= 20 THEN 'High' ELSE 'Low' END as category")

df.show()
+---+-----+--------+
| id|value|category|
+---+-----+--------+
|  1|   10|     Low|
|  2|   20|    High|
|  3|   30|    High|
+---+-----+--------+

# Apply multiple transformations and expressions
df = df.selectExpr("id", "value", "value * 2 as double_value", "CASE WHEN value >= 20 THEN 'High' ELSE 'Low' END as category")

df.show()
+---+-----+------------+--------+
| id|value|double_value|category|
+---+-----+------------+--------+
|  1|   10|          20|     Low|
|  2|   20|          40|    High|
|  3|   30|          60|    High|
+---+-----+------------+--------+

comparison: expr () and selectExpr ()

Key Differences
expr () is used when you want to apply SQL-like expressions in the middle of a transformation, typically within withColumn() or filter().
selectExpr() is used when you want to apply multiple expressions in a single statement to transform and select columns, much like a SQL SELECT statement.

Featureexpr()selectExpr()
PurposeUsed for applying single SQL expressionsUsed for applying multiple SQL expressions
Typical UsageInside select(), withColumn(), filter()As a standalone method for multiple expressions
Operates OnIndividual column expressionsMultiple expressions at once
FlexibilityAllows complex operations on a single columnSimpler for multiple transformations
Exampledf.select(expr("age + 5").alias("new_age"))df.selectExpr("age + 5 as new_age", "age * 2")
Use CaseFine-grained control of expressions in various transformationsQuickly apply and select multiple expressions as new columns

Conclusion
expr (): Ideal for transforming or adding individual columns using SQL expressions.
selectExpr (): Useful for selecting, renaming, and transforming multiple columns at once using SQL-like syntax.


na.fill ()

na.fill(): Used to replace null values in DataFrames.

Syntax
df.na.fill( {“vaule”:0} )

sample dataframe

data = [(1, 10), (2, 20), (3, 30),(4,None)]
df = spark.createDataFrame(data, [“id”, “value”])
+—+—–+
| id | value|
+—+—–+
| 1 | 10|
| 2 | 20|
| 3 | 30|
| 4 | null|
+—+—–+

caution: in pyspark, “NULL” is None

#Fill null values in a specific column with a default value (e.g., 0)
df = df.na.fill({"value": 0})

df.show()
==output==
+---+-----+
| id|value|
+---+-----+
|  1|   10|
|  2|   20|
|  3|   30|
|  4|    0|
+---+-----+

coalescs ()

coalesce function is used to return the first non-null value among the columns you provide

Syntax

from pyspark.sql.functions import coalesce
coalesce(col1, col2, …, colN)

from pyspark.sql.functions import coalesce

# Return the first non-null value from multiple columns
df = df.withColumn("first_non_null", coalesce(col("column1"), col("column2"), col("column3")))

isin ()

isin function is used to check if a value belongs to a list or set of values.

Syntax
from pyspark.sql.functions import col
col(“column_name”).isin(value1, value2, …, valueN)

sample dataframe

data = [(1, 10), (2, 20), (3, 30),(4,None)]
df = spark.createDataFrame(data, [“id”, “value”])
+—+—–+
| id | value|
+—+—–+
| 1 | 10|
| 2 | 20|
| 3 | 30|
| 4 | null|
+—+—–+

caution: in pyspark, “NULL” is None

from pyspark.sql.functions import col
df = df.withColumn("is_in_list", col("value").isin(18, 25, 30)).show()

df.show()
==output==
+---+-----+----------+
| id|value|is_in_list|
+---+-----+----------+
|  1|   10|     false|
|  2|   20|     false|
|  3|   30|      true|
|  4|    0|     false|
+---+-----+----------+

between ()

The between function allows you to check whether a column’s value falls within a specified range.

Syntax
from pyspark.sql.functions import col
col(“column_name”).between(lower_bound, upper_bound)

sample dataframe

data = [(1, 10), (2, 20), (3, 30),(4,31)]
df = spark.createDataFrame(data, [“id”, “value”])
+—+—–+
| id | value|
+—+—–+
| 1 | 10|
| 2 | 20|
| 3 | 30|
| 4 | 31|
+—+—–+

from pyspark.sql.functions import col
# Check if the value is between 20 and 30
df = df.withColumn("value_between_20_and_30", col("value").between(20, 30)).show()

df.show()
==output==
+---+-----+-----------------------+
| id|value|value_between_20_and_30|
+---+-----+-----------------------+
|  1|   15|                  false|
|  2|   20|                   true|
|  3|   30|                   true|
|  4|   36|                  false|

note: it included boundary value - "20" and "30"

isNull (), isNotNull ()

PySpark provides isNull and isNotNull functions to check for null values in DataFrame columns.

Syntax
col(“column_name”).isNull()
col(“column_name”).isNotNull()

sample dataframe
+—+—-+
| id| age|
+—+—-+
| 1| 15|
| 2|null|
| 3| 45|
+—+—-+

from pyspark.sql.functions import col
# Check if the 'name' column has null values
df = df.withColumn("has_null_name", col("name").isNull())

  

# Check if the 'age' column has non-null values
df = df.withColumn("has_age", col("age").isNotNull()).show()
==output==
+---+----+--------+
| id| age|has_age |
+---+----+--------+
|  1|  25|   true |
|  2|null|  false |
|  3|  45|   true |
+---+----+--------+

Pyspark: read, write and flattening complex nested json

Reading JSON Files

Syntax

df = spark.read.option(options).schema(schame).json(“/path/to/json/file”)

options

  • multiline: option (“multiline”, “true”)
     If your JSON files contain multiple lines for a single record, you need to enable multiline.
  • Mode: option (“mode”, “FAILFAST”)
    Determines the behavior when the input file contains corrupt records. Available options:
    PERMISSIVE (default): Tries to parse all records and puts corrupt records in a new column _corrupt_record.
    DROPMALFORMED: Drops the corrupted records.
    FAILFAST: Fails when corrupt records are encountered.
  • primitivesAsString: option (“primitivesAsString”, “true”)
    Treats primitives (like int, float, etc.) as strings.
  • allowUnquotedFieldNames: option (“allowUnquotedFieldNames”, “true”)
    Allows reading JSON files with unquoted field names.
  • allowSingleQuotes: (“allowSingleQuotes”, “true”)
    Allows single quotes for field names and values.
  • timestampFormat: option(“timestampFormat”, “yyyy-MM-dd’T’HH:mm:ss”)
    Sets the format for timestamp fields.

Schema


from pyspark.sql.types import StructType, StructField, StringType, IntegerType

schema = StructType([
    StructField("name", StringType(), True),
    StructField("age", IntegerType(), True)
])

Example


df = spark.read.option("multiline", "true") \
               .option("mode", "PERMISSIVE") \
               .schema(schema) \
               .json("/path/to/input/json")


Writing JSON Files

Syntax

df.write. option (options). mode(“overwrite”).json(“/path/to/output/json”)

  • mode: mode(“overwrite”)
    Specifies how to handle existing data. Available options:
    ·  overwrite: Overwrites existing data.
    ·  append: Appends to existing data.
    ·  ignore: Ignores write operation if the file already exists.
    ·  error (default): Throws an error if the file exists
  • compression: option(“compression”, “gzip”)
    Specifies compression for the output file. Available options include gzip, bzip2, none (default).
  • dateFormat: option(“dateFormat”, “yyyy-MM-dd”)
    Sets the format for date fields during writing.
  • timestampFormat: option(“timestampFormat”, “yyyy-MM-dd’T’HH:mm:ss”)
    Sets the format for timestamp fields during writing.
  • ignoreNullFields: option(“ignoreNullFields”, “true”)
    Ignores null fields when writing JSON.
  • lineSep: option(“lineSep”, “\r\n”)
    Custom line separator (default is \n).

Example


df.write.mode("overwrite") \
        .option("compression", "gzip") \
        .option("dateFormat", "yyyy-MM-dd") \
        .json("/path/to/output/json")

Flattening the Nested JSON

Sample Complex JSON

This JSON includes nested objects and arrays. The goal is to flatten the nested structures.

{
  "name": "John",
  "age": 30,
  "address": {
    "street": "123 Main St",
    "city": "New York"
  },
  "contact": {
    "phone": "123-456-7890",
    "email": "john@example.com"
  },
  "orders": [
    {
      "id": 1,
      "item": "Laptop",
      "price": 999.99
    },
    {
      "id": 2,
      "item": "Mouse",
      "price": 49.99
    }
  ]
}

#Reading the Complex JSON
df = spark.read.option(“multiline”, “true”).json(“/path/to/complex.json”)

Step 1: Flattening Nested Objects

Flattening the Nested JSON, use PySpark’s select and explode functions to flatten the structure.


from pyspark.sql.functions import col

df_flattened = df.select(
    col("name"),
    col("age"),
    col("address.street").alias("street"),
    col("address.city").alias("city"),
    col("contact.phone").alias("phone"),
    col("contact.email").alias("email")
)
df_flattened.show(truncate=False)

This will flatten the address and contact fields.

Step 2: Flattening Arrays with explode

For fields that contain arrays (like orders), you can use explode to flatten the array into individual rows.


from pyspark.sql.functions import explode

df_flattened_orders = df.select(
    col("name"),
    col("age"),
    col("address.street").alias("street"),
    col("address.city").alias("city"),
    col("contact.phone").alias("phone"),
    col("contact.email").alias("email"),
    explode(col("orders")).alias("order")
)

# Now flatten the fields inside the "order" structure
df_final = df_flattened_orders.select(
    col("name"),
    col("age"),
    col("street"),
    col("city"),
    col("phone"),
    col("email"),
    col("order.id").alias("order_id"),
    col("order.item").alias("order_item"),
    col("order.price").alias("order_price")
)

df_final.show(truncate=False)

Output

nameagestreetcityphoneemailorder_idorder_itemorder_price
John30123 Main StNew York123-456-7890john@example.com1Laptop999.99
John30123 Main StNew York123-456-7890john@example.com2Mouse49.99

Key Functions Used:

  • col(): Accesses columns of the DataFrame.
  • alias(): Renames a column.
  • explode(): Converts an array into multiple rows, one for each element in the array.

Generalize for Deeper Nested Structures

For deeply nested JSON structures, you can apply this process recursively by continuing to use select, alias, and explode to flatten additional layers.