StructType(), StructField()

StructType (), StructField ()

StructType () in PySpark is part of the pyspark.sql.types module and it is used to define the structure of a DataFrame schema.
StructField () is a fundamental part of PySpark’s StructType, used to define individual fields (columns) within a schema. A StructField specifies the name, data type, and other attributes of a column in a DataFrame schema.

StructType Syntax

from pyspark.sql.types import StructType, StructField, StringType, IntegerType 
schema = StructType([ 
StructField("name", StringType(), True), 
StructField("age", IntegerType(), True) 
])

StructField Syntax


StructField(name, dataType, nullable=True, metadata=None)

Parameter

fields (optional): A list of StructField objects that define the schema. Each StructField object specifies the name, type, and whether the field can be null.

Key Components

  • name: The name of the column.
  • dataType: The data type of the column (e.g., StringType(), IntegerType(), DoubleType(), etc.).
  • nullable: Boolean flag indicating whether the field can contain null values (True for nullable).

Common Data Types Used in StructField

  • StringType(): Used for string data.
  • IntegerType(): For integers.
  • DoubleType(): For floating-point numbers.
  • LongType(): For long integers.
  • ArrayType(): For arrays (lists) of values.
  • MapType(): For key-value pairs (dictionaries).
  • TimestampType(): For timestamp fields.
  • BooleanType(): For boolean values (True/False).
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, IntegerType

# Initialize Spark session
spark = SparkSession.builder.appName("Example").getOrCreate()

# Define schema using StructType
schema = StructType([
    StructField("name", StringType(), True),
    StructField("age", IntegerType(), True)
])

# Create DataFrame using the schema
data = [("John", 30), ("Alice", 25)]
df = spark.createDataFrame(data, schema)
df.show()
+-----+---+
| name|age|
+-----+---+
| John| 30|
|Alice| 25|
+-----+---+

Nested Schema

StructType can define a nested schema. For example, a column in the DataFrame might itself contain multiple fields.

nested_schema = StructType([
    StructField("name", StringType(), True),
    StructField("address", StructType([
        StructField("street", StringType(), True),
        StructField("city", StringType(), True)
    ]), True)
])

Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca

(remove all space from the email account 😊)

contains(), collect(), transform(), udf(), udf for sql

contains ()

The contains() function in PySpark is used to check if a string column contains a specific substring. It’s typically used in a filter() or select() operation to search within the contents of a column and return rows where the condition is true.

Syntax

Column.contains(substring: str)

Key Points

  • contains() is case-sensitive by default. For case-insensitive matching, use it with lower() or upper().
  • It works on string columns only. For non-string columns, you would need to cast the column to a string first.
sample DF
+-------+----------+
|   Name|Department|
+-------+----------+
|  James|     Sales|
|Michael|     Sales|
| Robert|        IT|
|  Maria|        IT|
+-------+----------+

# Filter rows where 'Department' contains 'Sales'
filtered_df = df.filter(df["Department"].contains("Sales"))
filtered_df.show()
+-------+----------+
|   Name|Department|
+-------+----------+
|  James|     Sales|
|Michael|     Sales|
+-------+----------+

# Add a new column 'Is_Sales' based on whether 'Department' contains 'Sales'
from pyspark.sql.functions import when
df_with_flag = df.withColumn(
    "Is_Sales",
    when(df["Department"].contains("Sales"), "Yes").otherwise("No")
)

df_with_flag.show()
+-------+----------+--------+
|   Name|Department|Is_Sales|
+-------+----------+--------+
|  James|     Sales|     Yes|
|Michael|     Sales|     Yes|
| Robert|        IT|      No|
|  Maria|        IT|      No|
+-------+----------+--------+

#Case-Insensitive Search
# Search for 'sales' in a case-insensitive manner
from pyspark.sql.functions import lower
df_lower_filtered = df.filter(lower(df["Department"]).contains("sales"))
df_lower_filtered.show()
+-------+----------+
|   Name|Department|
+-------+----------+
|  James|     Sales|
|Michael|     Sales|
+-------+----------+

collect ()

The collect () function simply gathers all rows from the DataFrame or RDD and returns them as a list of Row objects. It does not accept any parameters.

Syntax

DataFrame.collect()
not any parameter at all

Key Points

  • Use on Small Data: Since collect() brings all the data to the driver, it should be used only on small datasets. If you try to collect a very large dataset, it can cause memory issues or crash the driver..
  • For large datasets, consider using alternatives like take(n), toPandas(), show(n)
sample DF
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+

# Collect all rows from the DataFrame
collected_data = df.collect()

# Access all rows
print(collected_data)
[Row(Name='Alice', Age=25), Row(Name='Bob', Age=30), Row(Name='Charlie', Age=35)]

# Access a row
print(collected_data[0])
Row(Name='Alice', Age=25)

# Access a cell
print(collected_data[0][0])
Alice

# Display the collected data
for row in collected_data:
    print(row)
==output==
Row(Name='Alice', Age=25)
Row(Name='Bob', Age=30)
Row(Name='Charlie', Age=35)

# Filter and collect
filtered_data = df.filter(df["Age"] > 30).collect()

# Process collected data
for row in filtered_data:
    print(f"{row['Name']} is older than 30.")
==output==
Charlie is older than 30.


# Access specific columns from collected data
for row in collected_data:
    print(f"Name: {row['Name']}, Age: {row.Age}")
==output==
Name: Alice, Age: 25
Name: Bob, Age: 30
Name: Charlie, Age: 35



transform ()

The transform () function in PySpark is a higher-order function introduced to apply custom transformations to columns in a DataFrame. It allows you to perform a transformation function on an existing column, returning the transformed data as a new column. It is particularly useful when working with complex data types like arrays or for applying custom logic to column values.

Syntax

df1 = df.transform(my_function)

Parameters

my_function: a python function

Key point

The transform() method takes a function as an argument. It automatically passes the DataFrame (in this case, df) to the function. So, you only need to pass the function namemy_function"

sample DF
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+

from pyspark.sql.functions import upper
#Declare my function
def addTheAge(mydf):    
    return mydf.withColumn('age',mydf.age + 2)

def upcaseTheName(mydf):
    reture mydf.withColumn("Name", upper(mydf.Name))

#transforming: age add 2 years
df1=df.transform(addTheAge)
df1.show()
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 27|
|    Bob| 32|
|Charlie| 37|
+-------+---+

The transform () method takes a function as an argument. It automatically passes the DataFrame (in this case, df) to the function. So, you only need to pass the function name "my_function".


#transforming to upcase
df1=df.transform(upcaseTheName)
df1.show()
+-------+---+
|   Name|Age|
+-------+---+
|  ALICE| 25|
|    BOB| 30|
|CHARLIE| 35|
+-------+---+

#transforming to upcase and age add 2 years
df1=df.transform(addTheAge).transform(upcaseTheName)
df1.show()
+-------+---+
|   Name|Age|
+-------+---+
|  ALICE| 27|
|    BOB| 32|
|CHARLIE| 37|
+-------+---+


udf ()

The udf (User Defined Function) allows you to create custom transformations for DataFrame columns using Python functions. You can use UDFs when PySpark’s built-in functions don’t cover your use case or when you need more complex logic.

Syntax

from pyspark.sql.functions import udf
from pyspark.sql.types import DataType
# Define a UDF function ,
# Register the function as a UDF
my_udf = udf(py_function, returnType)

Parameters

  • py_function: A Python function you define to transform the data.
  • returnType: PySpark data type (e.g., StringType(), IntegerType(), DoubleType(), etc.) that indicates what type of data your UDF returns.
    • StringType(): For returning strings.
    • IntegerType(): For integers.
    • FloatType(): For floating-point numbers.
    • BooleanType(): For booleans.
    • ArrayType(DataType): For arrays.
    • StructType(): For structured data.

Key point

You need to specify the return type for the UDF, as PySpark needs to understand how to handle the results of the UDF.

sample DF
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+


from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Define a Python function
def to_upper(name):
    return name.upper()

# Register the function as a UDF, specifying the return type as StringType
uppercase_udf = udf(to_upper, StringType())

# Apply the UDF using withColumn
df_upper = df.withColumn("Upper_Name", uppercase_udf(df["Name"]))

df_upper.show()
+-------+---+----------+
|   Name|Age|Upper_Name|
+-------+---+----------+
|  Alice| 25|     ALICE|
|    Bob| 30|       BOB|
|Charlie| 35|   CHARLIE|
+-------+---+----------+

# UDF Returning Boolean
from pyspark.sql.functions import udf
from pyspark.sql.types import BooleanType
# Define a Python function
def is_adult(age):
    return age > 30

# Register the UDF
is_adult_udf = udf(is_adult, BooleanType())

# Apply the UDF
df_adult = df.withColumn("Is_Adult", is_adult_udf(df["Age"]))

# Show the result
df_adult.show()
+-------+---+--------+
|   Name|Age|Is_Adult|
+-------+---+--------+
|  Alice| 25|   false|
|    Bob| 30|   false|
|Charlie| 35|    true|
+-------+---+--------+

# UDF with Multiple Columns (Multiple Arguments)
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Define a Python function that concatenates two columns
def concat_name_age(name, age):
    return f"{name} is {age} years old"

# Register the UDF
concat_udf = udf(concat_name_age, StringType())

# Apply the UDF to multiple columns
df_concat = df.withColumn("Description", concat_udf(df["Name"], df["Age"]))

# Show the result
df_concat.show()
+-------+---+--------------------+
|   Name|Age|         Description|
+-------+---+--------------------+
|  Alice| 25|Alice is 25 years...|
|    Bob| 30| Bob is 30 years old|
|Charlie| 35|Charlie is 35 yea...|
+-------+---+--------------------+

spark.udf.register(), Register for SQL query

in PySpark, you can use spark.udf.register() to register a User Defined Function (UDF) so that it can be used not only in DataFrame operations but also in SQL queries. This allows you to apply your custom Python functions directly within SQL statements executed against your Spark session.

Syntax

spark.udf.register(“registered_pyFun_for_sql”, original_pyFun, returnType)

parameter

  • registered_pyFun_for_sql: The name of the UDF, which will be used in SQL queries.
  • original_pyFun: The original Python function that contains the custom logic.
  • returnType: The return type of the UDF, which must be specified (e.g., StringType(), IntegerType()).
smaple df
+-------+---+
|   Name|Age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+

from pyspark.sql import SparkSession
from pyspark.sql.types import StringType

# Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")

# Define a Python function
def original_myPythonFun(name):
    return name.upper()

# Register the function as a UDF for SQL with the return type StringType
spark.udf.register("registered_pythonFun_for_sql"\
                    , original_myPythonFun\
                    , StringType()\
                )

# Use the UDF - "registered_pythonFun_for_sql" in a SQL query
result = spark.sql(\
    "SELECT Name, registered_pythonFun_for_sql(Name) AS Upper_Name \
        FROM people"\
    )
result.show()
+-------+----------+
|   Name|Upper_Name|
+-------+----------+
|  Alice|     ALICE|
|    Bob|       BOB|
|Charlie|   CHARLIE|
+-------+----------+

we can directly use SQL style with magic %sql

%sql
SELECT Name
      , registered_pythonFun_for_sql(Name) AS Upper_Name 
  FROM people
+-------+----------+
|   Name|Upper_Name|
+-------+----------+
|  Alice|     ALICE|
|    Bob|       BOB|
|Charlie|   CHARLIE|
+-------+----------+
A complex python function declares, udf register, and apply example

Sample DataFrame

#Sample DataFrame
data = [    (1, 2, 3, 9, "alpha", "beta", "gamma"),    (4, 5, 6, 8, "delta", "epsilon", "zeta")]

df = spark.createDataFrame(data, ["col1", "col2", "col3", "col9", "str1", "str2", "str3"])
df.show()
+----+----+----+----+-----+-------+-----+
|col1|col2|col3|col9| str1|   str2| str3|
+----+----+----+----+-----+-------+-----+
|   1|   2|   3|   9|alpha|   beta|gamma|
|   4|   5|   6|   8|delta|epsilon| zeta|
+----+----+----+----+-----+-------+-----+

Define the Python function to handle multiple columns and scalars

# Define the Python function to handle multiple columns and scalars

def pyFun(col1, col2, col3, col9, int1, int2, int3, str1, str2, str3):
    # Example business logic
    re_value1 = col1 * int1 + len(str1)
    re_value2 = col2 + col9 + len(str2)
    re_value3 = col3 * int3 + len(str3)
    value4 = re_value1 + re_value2 + re_value3

    # Return multiple values as a tuple
    return re_value1, re_value2, re_value3, value4

Define the return schema for the UDF

# Define the return schema for the UDF

return_schema = StructType([
    StructField("re_value1", IntegerType(), True),
    StructField("re_value2", IntegerType(), True),
    StructField("re_value3", IntegerType(), True),
    StructField("value4", IntegerType(), True)
])

Register the UDF

# register the UDF

# for SQL use this 
# spark.udf.register("pyFun_udf", pyFun, returnType=return_schema)

pyFun_udf = udf(pyFun, returnType=return_schema)

Apply the UDF to the DataFrame, using ‘lit()’ for constant values

# Apply the UDF to the DataFrame, using 'lit()' for constant values

df_with_udf = df.select(
    col("col1"),
    col("col2"),
    col("col3"),
    col("col9"),
    col("str1"),
    col("str2"),
    col("str3"),
    pyFun_udf(
        col("col1"),
        col("col2"),
        col("col3"),
        col("col9"),
        lit(10),  # Use lit() for the constant integer values
        lit(20),
        lit(30),
        col("str1"),
        col("str2"),
        col("str3")
    ).alias("result")
)

# Show the result
df_with_udf.show(truncate=False)

==output==
+----+----+----+----+-----+-------+-----+------------------+
|col1|col2|col3|col9|str1 |str2   |str3 |result            |
+----+----+----+----+-----+-------+-----+------------------+
|1   |2   |3   |9   |alpha|beta   |gamma|{15, 15, 95, 125} |
|4   |5   |6   |8   |delta|epsilon|zeta |{45, 20, 184, 249}|
+----+----+----+----+-----+-------+-----+------------------+

Access the “result”

from pyspark.sql.functions import col
df_result_re_value3 = df_with_udf.select ('col1', 'result',col('result').re_value3.alias("re_value3"))
df_result_re_value3.show()
+----+------------------+---------+
|col1|            result|re_value3|
+----+------------------+---------+
|   1| {15, 15, 95, 125}|       95|
|   4|{45, 20, 184, 249}|      184|
+----+------------------+---------+

udf register for sql using

“sample dataframe”, “declare python function”, “Define the return schema for the UDF” are the same. only register udf different.

# register the UDF

spark.udf.register("pyFun_udf", pyFun, returnType=return_schema)

# create a temporary view for SQL query
df.createOrReplaceTempView("my_table")

notebook uses magic %sql


%sql
SELECT col1, col2, col3, col9, str1, str2, str3,            pyFun_udf(col1, col2, col3, col9, 10, 20, 30, str1, str2, str3) AS result    
FROM my_table

==output==
col1	col2	col3	col9	str1	str2	str3	result
1	2	3	9	alpha	beta	gamma	{"re_value1":15,"re_value2":15,"re_value3":95,"value4":125}
4	5	6	8	delta	epsilon	zeta	{"re_value1":45,"re_value2":20,"re_value3":184,"value4":249}

Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca

(remove all space from the email account 😊)

Join(), union(), unionAll(), unionByName(), fill(), fillna()

join()

The join() method is used to combine two DataFrames based on a common column or multiple columns. This method is extremely versatile, supporting various types of SQL-style joins such as inner, outer, left, and right joins.

Syntax

DataFrame.join(other, on=None, how=None)

Parameters

  • other: The other DataFrame to join with the current DataFrame.
  • on: A string or a list of column names on which to join. This can also be an expression (using col() or expr()).

how: The type of join to perform. It can be one of

  • 'inner': Inner join (default). Returns rows that have matching values in both DataFrames.
  • 'outer' or 'full': Full outer join. Returns all rows from both DataFrames, with null values for missing matches.
  • 'left' or 'left_outer': Left outer join. Returns all rows from the left DataFrame and matched rows from the right DataFrame. Unmatched rows from the right DataFrame result in null values.
  • 'right' or 'right_outer': Right outer join. Returns all rows from the right DataFrame and matched rows from the left DataFrame. Unmatched rows from the left DataFrame result in null values.
  • 'left_semi': Left semi join. Returns only the rows from the left DataFrame where the join condition is satisfied.
  • 'left_anti': Left anti join. Returns only the rows from the left DataFrame where no match is found in the right DataFrame.
  • 'cross': Cross join (Cartesian product). Returns the Cartesian product of both DataFrames, meaning every row from the left DataFrame is combined with every row from the right DataFrame.
sample datasets
df1
+-------+-------+
|   name|dept_id|
+-------+-------+
|  Alice|      1|
|    Bob|      2|
|Charlie|      3|
+-------+-------+
df2
+-------+-----------+
|dept_id|  dept_name|
+-------+-----------+
|      1|         HR|
|      2|    Finance|
|      4|Engineering|
+-------+-----------+

# Union the two DataFrames
df_union = df1.union(df2)

==output==
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
|  David| 40|
+-------+---+

# Inner join (default)
df_inner = df1.join(df2, on="dept_id")

==output==
+-------+-----+---------+
|dept_id| name|dept_name|
+-------+-----+---------+
|      1|Alice|       HR|
|      2|  Bob|  Finance|
+-------+-----+---------+


# Inner join with filter/where conditions
df_joined = df1.join(df2, ( df1['dept_id'] == df2['dept_id']) \
  & (df1['age'] > 33)  \
  & (df1['age'] < 46)  \
  & (df1['col'] == vaule) \
, "inner")

Others are the same as SQL. new, let’s focus on Semi and Anti Joins

  • Left Semi Join: Only returns rows from the left DataFrame that have matches in the right DataFrame.
  • Left Anti Join: Only returns rows from the left DataFrame that don’t have matches in the right DataFrame.
# Left semi join
df_left_semi = df1.join(df2, on="dept_id", how="left_semi")
df_left_semi.show()

==output==
+-------+-----+
|dept_id| name|
+-------+-----+
|      1|Alice|
|      2|  Bob|
+-------+-----+
Charlie's dep_Id=3. it does not appear in df2, so skipped it.


# Left anti join
df_left_anti = df1.join(df2, on="dept_id", how="left_anti")
df_left_anti.show()

==output==
+-------+-------+
|dept_id|   name|
+-------+-------+
|      3|Charlie|
+-------+-------+
Only Charlie, dep_Id=3, does not appear in df2, so return it only.

union ()

The union() method is used to combine two DataFrames with the same schema (i.e., same number and type of columns). This operation concatenates the rows of the two DataFrames, similar to a SQL UNION operation, but without removing duplicate rows (like UNION ALL in SQL).

Syntax

DataFrame.union(other)

Key Points

  • Schema Compatibility: Both DataFrames must have the same number of columns, and the data types of the corresponding columns must match.
  • Union Behavior: Unlike SQL’s UNION which removes duplicates, union() in PySpark keeps all rows, including duplicates. This is equivalent to SQL’s UNION ALL.
  • Order of Rows: The rows from the first DataFrame will appear first, followed by the rows from the second DataFrame.
  • Column Names and Data Types Must Match: The column names don’t need to be identical in both DataFrames, but their positions and data types must match. If the number of columns or the data types don’t align, an error will be raised.
  • Union with Different Column Names: Even though column names don’t need to be the same, the columns are merged by position, not by name. If you attempt to union() DataFrames with different column orders, the results could be misleading. Therefore, it’s important to make sure the schemas match.
sample datasets
df1
+-----+---+
| name|age|
+-----+---+
|Alice| 25|
|  Bob| 30|
+-----+---+

df2:
+-------+---+
|   name|age|
+-------+---+
|Charlie| 35|
|  David| 40|
+-------+---+

# Union the two DataFrames
df_union = df1.union(df2)

==output==
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
|  David| 40|
+-------+---+

unionByName ()

The unionByName() method in PySpark is similar to the union() method but with a key distinction: it merges two DataFrames by aligning columns based on column names, rather than their positions.

Syntax

DataFrame.unionByName(other, allowMissingColumns=False)

Parameters

  • other: The other DataFrame to be unioned with the current DataFrame.
  • allowMissingColumns: A boolean flag (False by default). If True, this allows the union of DataFrames even if one DataFrame has columns that are missing in the other. The missing columns in the other DataFrame will be filled with null values.

Key Points

  • Column Name Alignment: The method aligns columns by name, not by their position, which makes it flexible for combining DataFrames that have different column orders.
  • Handling Missing Columns: By default, if one DataFrame has columns that are missing in the other, PySpark will throw an error. However, setting allowMissingColumns=True allows unioning in such cases, and missing columns in one DataFrame will be filled with null values in the other.
  • Duplicate Rows: Just like union(), unionByName() does not remove duplicates, and the result includes all rows from both DataFrames.
sample datasets
df1
+-----+---+
| name|age|
+-----+---+
|Alice| 25|
|  Bob| 30|
+-----+---+

df2:
+-------+----+
|age| name|
+---+--------+
| 35| Charlie|
| 40| David  |
+---+--------+

# Union the two DataFrames
df_union = df1.unionByName(df2)

==output==
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
|  David| 40|
+-------+---+

Handling Missing Columns with allowMissingColumns=True

sample df
+-----+---+
| name|age|
+-----+---+
|Alice| 25|
+-----+---+

+---+-------+-------+
|age|   name|  title|
+---+-------+-------+
| 35|Charlie|Manager|
+---+-------+-------+

# Union by name with missing columns allowed
# Alice does not has "title"  
df_union_missing_columns = df1.unionByName(df2, allowMissingColumns=True)

==output==
+-------+---+-------+
|   name|age|  title|
+-------+---+-------+
|  Alice| 25|   null|
|Charlie| 35|Manager|
+-------+---+-------+

Multiple Columns and Different Schemas

Sample Df
+-----+---+--------+
| name|age|    city|
+-----+---+--------+
|Alice| 25|New York|
+-----+---+--------+

+---+----+
|age|name|
+---+----+
| 30| Bob|
+---+----+

# Union by name with missing columns allowed
df_union = df1.unionByName(df2, allowMissingColumns=True)

==output==
+-----+---+--------+
| name|age|    city|
+-----+---+--------+
|Alice| 25|New York|
|  Bob| 30|    null|
+-----+---+--------+

unionAll ()

unionAll() was an older method used to combine two DataFrames without removing duplicates. However, starting from PySpark 2.0, unionAll() has been deprecated and replaced by union(). The behavior of unionAll() is now identical to that of union() in PySpark.

look at union () in detail.


fillna (), df.na.fill()

fillna() is a method used to replace null (or missing) values in a DataFrame with a specified value. Return new DataFrame with null values replaced by the specified value.

Syntax

DataFrame.fillna(value, subset=None)

df.na.fill(value, subset=None)

df.na.fill(value, subset=None) has the result of df.fillna().

Parameters

  • value: The value to replace null with. It can be a scalar value (applied across all columns) or a dictionary (to specify column-wise replacement values). The type of value should match the type of the column you are applying it to (e.g., integers for integer columns, strings for string columns).
  • subset: Specifies the list of column names where the null values will be replaced.
    If not provided, the replacement is applied to all columns.
sample df
+-------+----+----+
|   name| age|dept|
+-------+----+----+
|  Alice|  25|null|
|    Bob|null|  HR|
|Charlie|  30|null|
+-------+----+----+

df.printSchema()
root
 |-- name: string (nullable = true)
 |-- age: long (nullable = true)
 |-- dept: string (nullable = true)

"age" is long, "dept" is string

# Fill null values with default values for all columns
df_filled = df.fillna(0)

==output==
+-------+---+----+
|   name|age|dept|
+-------+---+----+
|  Alice| 25|null|
|    Bob|  0|  HR|
|Charlie| 30|null|
+-------+---+----+
Bob's age is filled with 0, since it is "long", and "Dept" column did not fill, still remains "null".

Handle different Columns with different data type

# Fill nulls in the 'age' column with 0 and in the 'dept' column with "Unknown"
df_filled_columns = df.fillna({"age": 0, "dept": "Unknown"})

df_filled_columns.show()

==output==
+-------+---+-------+
|   name|age|   dept|
+-------+---+-------+
|  Alice| 25|Unknown|
|    Bob|  0|     HR|
|Charlie| 30|Unknown|

Fill Nulls in Specific Subset of Columns

# Fill null values only in the 'age' column
df_filled_age = df.fillna(0, subset=["age"])

df_filled_age.show()
+-------+---+----+
|   name|age|dept|
+-------+---+----+
|  Alice| 25|null|
|    Bob|  0|  HR|
|Charlie| 30|null|
+-------+---+----+


select()

select() is used to project a subset of columns from a DataFrame or to create new columns based on expressions. It returns a new DataFrame containing only the selected columns or expressions.

Syntax

DataFrame.select(*cols)
df.select(“id”, “name”)
df.select(df.id, df.name)
df.select(df[“id”], df[“name”])
df.select(“name”, col(“age”) + 5)

sample dataframe
+-------+---+---------+
|   name|age|     dept|
+-------+---+---------+
|  Alice| 25|       HR|
|    Bob| 30|  Finance|
|Charlie| 35|Marketing|
+-------+---+---------+
# Select specific columns (name and age)
df_selected = df.select("name", "age")
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+


# Select and transform columns, a new column added.
from pyspark.sql.functions import col

df_transformed = df.select("name", df.age,col("age") + 5)
+-------+---+---------+
|   name|age|(age + 5)|
+-------+---+---------+
|  Alice| 25|       30|
|    Bob| 30|       35|
|Charlie| 35|       40|
+-------+---+---------+

# Using Expressions Inside select()
from pyspark.sql.functions import expr

# Select columns using expressions
df_expr = df.select("name", expr("age + 10").alias("age_plus_10"))
+-------+-----------+
|   name|age_plus_10|
+-------+-----------+
|  Alice|         35|
|    Bob|         40|
|Charlie|         45|
+-------+-----------+

# Select All Columns
df_all_columns = df.select("*")
+-------+---+---------+
|   name|age|     dept|
+-------+---+---------+
|  Alice| 25|       HR|
|    Bob| 30|  Finance|
|Charlie| 35|Marketing|
+-------+---+---------+

Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca

(remove all space from the email account 😊)

distinct(), dropDuplicates(), orderBy(), sort(), groupBy(), agg()

distinct()

distinct () is used to remove duplicate rows from a DataFrame or RDD, leaving only unique rows. It returns a new DataFrame that contains only unique rows from the original DataFrame.

Syntax:

DataFrame.distinct()

Sample dataframe
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|  Alice| 25|
|Charlie| 35|
+-------+---+
# Apply distinct() method
distinct_df = df.distinct()

==output==
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+
# Selecting Distinct Values for Specific Columns

#sample DF
+---+-----+---+
| id| name|age|
+---+-----+---+
|  1|Alice| 29|
|  2|  Bob| 35|
|  1|Alice| 29|
|  3|Cathy| 29|
+---+-----+---+
distinct_columns = df.select("name", "age").distinct()
distinct_columns.show()

+---+-----+---+
| id| name|age|
+---+-----+---+
|  1|Alice| 29|
|  2|  Bob| 35|
|  3|Cathy| 29|
+---+-----+---+

dropDuplicates ()

dropDuplicates () is used to remove duplicate rows from a DataFrame based on one or more specific columns.

Syntax:

DataFrame.dropDuplicates([col1, col2, …, coln])

Parameters

cols (optional): This is a list of column names based on which you want to drop duplicates. If no column names are provided, dropDuplicates() will behave similarly to distinct(), removing duplicates across all columns.

Sample dataframe
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|  Alice| 25|
|Charlie| 35|
+-------+---+
# Drop duplicates across all columns (similar to distinct)
df_no_duplicates = df.dropDuplicates()

==output==
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+

# Drop duplicates based on the "name" column
df_unique_names = df.dropDuplicates(["name"])

==output==
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 35|
+-------+---+

In the second case, only the first occurrence of each name is kept, while duplicates are removed, regardless of other columns.


orderBy(), sort ()

orderBy() or sort () method is used to sort the rows of a DataFrame based on one or more columns in ascending or descending order. It is equivalent to the SQL ORDER BY clause. The method returns a new DataFrame that is sorted based on the provided column(s).

In PySpark, both orderBy() and sort() methods are available, and they are essentially aliases of each other, with no functional difference. You can use either based on preference:

Syntax:

DataFrame.orderBy(*cols, **kwargs)
DataFrame.sort(*cols, **kwargs)

Parameters

  • cols: Column(s) or expressions to sort by.
    This can be Column names as strings.
  • PySpark Column objects with the sorting direction (asc/desc).
Sample dataframe
+-------+---+
|   name|age|
+-------+---+
|  Alice| 25|
|    Bob| 30|
|Charlie| 20|
|  David| 35|
+-------+---+
# Sort by 'age' column in ascending order (default)
df_sorted = df.orderBy("age")
df_ordered = df.sort("age")

==output==
+-------+---+
|   name|age|
+-------+---+
|Charlie| 20|
|  Alice| 25|
|    Bob| 30|
|  David| 35|
+-------+---+

# Sorting by multiple columns
original dataset
+-------+------+---+
|   name|gender|age|
+-------+------+---+
|  Alice|Female| 25|
|    Bob|  Male| 30|
|  Alice|Female| 22|
|Charlie|  Male| 20|
+-------+------+---+

# Method 1: Using list of column names
df_sorted1 = df.orderBy(["name", "age"], ascending=[True, False])

# Method 2: Using asc() and desc()
from pyspark.sql.functions import desc,asc
df_sorted2 = df.orderBy(asc("name"), desc("age"))

# Method 3: mix
df_sorted3  = df.orderBy(df["name"], df.age, ascending=[True, False]).show()
==output==
+-------+------+---+
|   name|gender|age|
+-------+------+---+
|  Alice|Female| 25|
|  Alice|Female| 22|
|    Bob|  Male| 30|
|Charlie|  Male| 20|
+-------+------+---+

groupBy ()

groupBy() is a method used to group rows in a DataFrame based on one or more columns, similar to SQL’s GROUP BY clause.

Return Type:

It returns a GroupedData object, on which you can apply aggregate functions (agg(), count(), sum(), etc.) to perform computations on the grouped data.

Syntax:

DataFrame.groupBy(*cols)

Parameters

cols: One or more column names or expressions to group by.

Sample dataframe
+-------+----------+
|   name|department|
+-------+----------+
|  Alice|     Sales|
|    Bob|     Sales|
|Charlie|        HR|
|  David|        HR|
|    Eve|     Sales|
+-------+----------+
# Group by department and count the number of employees in each department
df_grouped = df.groupBy("department").count()

==output==
+----------+-----+
|department|count|
+----------+-----+
|     Sales|    3|
|        HR|    2|
+----------+-----+

# Group by multiple columns
original dataset
+-------+----------+------+
|   name|department|gender|
+-------+----------+------+
|  Alice|     Sales|Female|
|    Bob|     Sales|  Male|
|Charlie|        HR|  Male|
|  David|        HR|  Male|
|    Eve|     Sales|Female|
+-------+----------+------+

# Group by department and gender, then count the number of employees in each group
df_grouped_multi = df.groupBy("department", "gender").count()

+----------+------+-----+
|department|gender|count|
+----------+------+-----+
|     Sales|Female|    2|
|     Sales|  Male|    1|
|        HR|  Male|    2|
+----------+------+-----+

agg ()

agg() function in PySpark is used for performing aggregate operations on a DataFrame, such as computing sums, averages, counts, and other aggregations. it is often used in combination with groupBy() to perform group-wise aggregations.

Syntax:

from pyspark.sql.functions import sum, avg, count, max, min
DataFrame.agg(*exprs)

Parameters

  • sum(column): Sum of values in the column.
  • avg(column): Average of values in the column.
  • count(column): Number of rows or distinct values.
  • max(column): Maximum value in the column.
  • min(column): Minimum value in the column.
Sample dataframe
+-------+---+------+
|   name|age|salary|
+-------+---+------+
|  Alice| 25|  5000|
|    Bob| 30|  6000|
|Charlie| 20|  4000|
+-------+---+------+
# Apply aggregate functions on the DataFrame
df_agg = df.agg(sum("salary").alias("total_salary"), avg("age").alias("avg_age"))

==output==
+------------+-------+
|total_salary|avg_age|
+------------+-------+
|       15000|   25.0|
+------------+-------+

Aggregating with groupBy()

sample data
+-------+----------+------+
|   name|department|salary|
+-------+----------+------+
|  Alice|     Sales|  5000|
|    Bob|     Sales|  6000|
|Charlie|        HR|  4000|
|  David|        HR|  4500|
+-------+----------+------+

# Group by department and aggregate the sum and average of salaries
df_grouped_agg = df.groupBy("department").agg(
    sum("salary").alias("total_salary"),
    avg("salary").alias("avg_salary"),
    count("name").alias("num_employees")
)

+----------+------------+----------+-------------+
|department|total_salary|avg_salary|num_employees|
+----------+------------+----------+-------------+
|     Sales|       11000|    5500.0|            2|
|        HR|        8500|    4250.0|            2|
+----------+------------+----------+-------------+

Aggregating multiple columns with different functions

from pyspark.sql.functions import sum, count, avg, max

df_grouped_multi_agg = df.groupBy("department").agg(
    sum("salary").alias("total_salary"),
    count("name").alias("num_employees"),
    avg("salary").alias("avg_salary"),
    max("salary").alias("max_salary")
)

+----------+------------+-------------+----------+----------+
|department|total_salary|num_employees|avg_salary|max_salary|
+----------+------------+-------------+----------+----------+
|     Sales|       11000|            2|    5500.0|      6000|
|        HR|        8500|            2|    4250.0|      4500|
+----------+------------+-------------+----------+----------+

Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca

(remove all space from the email account 😊)

alias(), asc(), desc(), cast(), filter(), where(), like() functions

alias ()

alias () is used to assign a temporary name or “alias” to a DataFrame, column, or table, which can be used for reference in further operations

# for dataframe: 
df1 = df.alias("df1")
df1.show()
==output==
+---+---+
| id|age|
+---+---+
|  1| 25|
|  2| 12|
|  3| 40|
+---+---+

caution: df.alias(“newName”) will not generate new dataframe,

# for column: 
df.select(df.id.alias("new_ID")).show()
df.select(df["id"].alias("new_ID")).show()
df.select(col("id").alias("new_ID")).show()
==output==
+------+
|new_ID|
+------+
|     1|
|     2|
|     3|
+------+

asc(), desc ()

asc (): ascending order when sorting the rows of a DataFrame by one or more columns.

sample df
+---+---+
| id|age|
+---+---+
|  1| 25|
|  2| 12|
|  3| 40|
+---+---+
from pyspark.sql.functions import asc
df.orderBy(asc("age")).show()
==output==
+---+---+
| id|age|
+---+---+
|  2| 12|
|  1| 25|
|  3| 40|
+---+---+

desc (): descending order when sorting the rows of a DataFrame by one or more columns.

from pyspark.sql.functions import desc
df.orderBy(desc("age")).show()
==output==
+---+---+
| id|age|
+---+---+
|  3| 40|
|  1| 25|
|  2| 12|
+---+---+

cast ()

df[“column_name”].cast(“new_data_type”)

This can be a string representing the data type (e.g., "int", "double", "string", etc.) or a PySpark DataType object (like IntegerType(), StringType(), FloatType(), etc.).

Common Data Types:

  • IntegerType(), "int": For integer values.
  • DoubleType(), "double": For double (floating-point) values.
  • FloatType(), "float": For floating-point numbers.
  • StringType(), "string": For text or string values.
  • DateType(), "date": For date values.
  • TimestampType(), "timestamp": For timestamps.
  • BooleanType(), "boolean": For boolean values (true/false).
sample dataframe
+---+---+
| id|age|
+---+---+
|  1| 25|
|  2| 12|
|  3| 40|
+---+---+

df.printSchema()
root
 |-- id: long (nullable = true)
 |-- age: long (nullable = true)
from pyspark.sql.functions import col

# Cast a string column to integer
df1 = df.withColumn("age_int", col("age").cast("int"))
df1.printSchema()

==output==
root
 |-- id: long (nullable = true)
 |-- age: long (nullable = true)
 |-- age_int: integer (nullable = true)


# Cast 'id' from long to string and 'age' from long to double
df_casted = df.withColumn("id", col("id").cast("int")) \
              .withColumn("age", col("age").cast("double"))
df_casted.show()              
df_casted.printSchema()  

==output==
+---+----+
| id| age|
+---+----+
|  1|25.0|
|  2|12.0|
|  3|40.0|
+---+----+

root
 |-- id: string (nullable = true)
 |-- age: double (nullable = true)

filter (), where (),

filter () or where () function is used to filter rows from a DataFrame based on a condition or set of conditions. It works similarly to SQL’s WHERE clause,

df.filter(condition)
df.where(condition)

Condition (for ‘filter’)

  • & (AND)
  • | (OR)
  • ~ (NOT)
  • == (EQUAL)

all “filter” can change to “where”, vice versa.

sample dataframe
+------+---+-------+
|  Name|Age|Salary|
+------+---+-------+
| Alice| 30|  50000|
|   Bob| 25|  30000|
|Alicia| 40|  80000|
|   Ann| 32|  35000|
+------+---+-------+

# Filter rows where age is greater than 30 AND salary is greater than 50000
df.filter((df["age"] > 30) & (df["salary"] > 50000))
df.where((df["age"] > 30) & (df["salary"] > 50000))

+------+---+------+
|  Name|Age|Salary|
+------+---+------+
|Alicia| 40| 80000|
+------+---+------+

# Filter rows where age is less than 25 OR salary is less than 40000
df.filter((df["age"] < 25) | (df["salary"] < 40000))
df.where((df["age"] < 25) | (df["salary"] < 40000))

+----+---+------+
|Name|Age|Salary|
+----+---+------+
| Bob| 25| 30000|
| Ann| 32| 35000|
+----+---+------+

like ()


like() function is used to perform pattern matching on string columns, similar to the SQL LIKE operator

df.filter(df[“column_name”].like(“pattern”))

Pattern

  • %: Represents any sequence of characters.
  • _: Represents a single character.

pattern is case sensitive.

sample dataframe
+------+---+
|  Name|Age|
+------+---+
| Alice| 30|
|   Bob| 25|
|Alicia| 28|
|   Ann| 32|
+------+---+


# Filtering names that start with 'Al'
df.filter(df["Name"].like("Al%")).show()

+------+---+
|  Name|Age|
+------+---+
| Alice| 30|
|Alicia| 28|
+------+---+

# Filtering names that end with 'n'
df.filter(df["Name"].like("%n")).show()

+----+---+
|Name|Age|
+----+---+
| Ann| 32|
+----+---+

# Filtering names that contain 'li'
df.filter(df["Name"].like("%li%")).show()

+------+---+
|  Name|Age|
+------+---+
| Alice| 30|
|Alicia| 28|
+------+---+

# Filtering names where the second letter is 'l'
df.filter(df["Name"].like("A_l%")).show()

+----+---+
|Name|Age|
+----+---+
+----+---+
nothing found in this pattern 

Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca

(remove all space from the email account 😊)

condition: when (), otherwise (), expr()

if - else - " logic implementing

In PySpark, there isn’t an explicit “if-else" statement construct like in regular Python. Instead, PySpark provides several ways to implement conditional logic using functions such as when (), otherwise (), withColumn(), expr (), UDF etc.

using when (), expr() look at following sections. now focus on UDF to implement “if — then — else –” logic”.

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Define a Python function for age classification
def classify_age(age):
    if age >= 18:
        return 'Adult'
    else:
        return 'Minor'

# Register the function as a UDF
classify_age_udf = udf(classify_age, StringType())

# Create the DataFrame
data = [(1, 25), (2, 12), (3, 40)]
df = spark.createDataFrame(data, ["id", "age"])
+---+---+
| id|age|
+---+---+
|  1| 25|
|  2| 12|
|  3| 40|
+---+---+

# Apply the UDF to create a new column with the if-else logic
df = df.withColumn("age_group", classify_age_udf(df["age"]))

df.show()
+---+---+---------+
| id|age|age_group|
+---+---+---------+
|  1| 25|    Adult|
|  2| 12|    Minor|
|  3| 40|    Adult|
+---+---+---------+

In this example:

  • The function classify_age behaves like a Python if-else statement.
  • The UDF (classify_age_udf) applies this logic to the DataFrame.

when (), otherwise ()

when function in PySpark is used for conditional expressions, similar to SQL’s CASE WHEN clause.

Syntax

from pyspark.sql.functions import when
when(condition, value).otherwise(default_value)

Parameters

  • condition: A condition that returns a boolean (True/False). If this condition is true, the function will return the specified value.
  • value: The value to return when the condition is true.
  • otherwise(default_value): An optional method that specifies the default value to return when the condition is false.

sample dataframe

+—+—–+
| id|score|
+—+—–+
| 1| 92|
| 2| 85|
| 3| 98|
| 4| 59|
+—+—–+

from pyspark.sql.functions import when, col

# Multiple Conditions with AND/OR/NOT Logic
# AND : &
# OR : |
# NOT : ~
df = df.withColumn("grade", 
        when(col("score") >= 90, "A") 
        .when((col("score") >= 80) & (col("score") < 90), "B") 
        .when((col("score") >= 70) & (col("score") < 80), "C") 
        .otherwise("F"))
==output==
+---+-----+-----+
| id|score|grade|
+---+-----+-----+
|  1|   92|    A|
|  2|   85|    B|
|  3|   98|    A|
|  4|   59|    F|
+---+-----+-----+

expr ()

The expr () function allows you to use SQL expressions as a part of the DataFrame transformation logic.

Syntax

expr ()
from pyspark.sql.functions import expr
expr(sql_expression)

Parameters:

  • sql_expression: A string containing a SQL-like expression to be applied to the DataFrame. It can contain any valid SQL operations, such as arithmetic operations, column references, conditional logic, or function calls.

sample dataframe

+—+—–+
| id | value|
+—+—–+
| 1| 10|
| 2| 20|
| 3| 30|
+—+—–+

from pyspark.sql.functions import expr

# Use expr() to apply arithmetic operations
df = df.withColumn("double_value", expr("value * 2"))

==output==
+---+-----+------------+
| id|value|double_value|
+---+-----+------------+
|  1|   10|          20|
|  2|   20|          40|
|  3|   30|          60|
+---+-----+------------+

# Apply conditional logic using expr()
df = df.withColumn("category", expr("CASE WHEN value >= 20 THEN 'High' ELSE 'Low' END"))

df.show()
+---+-----+------------+--------+
| id|value|double_value|category|
+---+-----+------------+--------+
|  1|   10|          20|     Low|
|  2|   20|          40|    High|
|  3|   30|          60|    High|
+---+-----+------------+--------+

# Use SQL function CONCAT
df = df.withColumn("full_category", expr("CONCAT(category, '_Category')"))

df.show()
+---+-----+------------+--------+-------------+
| id|value|double_value|category|full_category|
+---+-----+------------+--------+-------------+
|  1|   10|          20|     Low| Low_Category|
|  2|   20|          40|    High|High_Category|
|  3|   30|          60|    High|High_Category|
+---+-----+------------+--------+-------------+

selectExpr ()

The selectExpr() method allows you to directly select columns or apply SQL expressions on multiple columns simultaneously, similar to SQL’s SELECT statement.

Syntax

from pyspark.sql.functions import selectExpr

df.selectExpr(*sql_expressions)

Parameters:

  • sql_expression: A list of SQL-like expressions (as strings) that define how to transform or select columns. Each expression can involve selecting a column, renaming it, applying arithmetic, or adding conditions using SQL syntax.

sample dataframe

+—+—–+
| id | value|
+—+—–+
| 1| 10|
| 2| 20|
| 3| 30|
+—+—–+

from pyspark.sql.functions import selectExpr

# Select specific columns and rename them using selectExpr()
df = df.selectExpr("id", "value * 2 as double_value", "value as original_value")

df.show()

==output==
+---+------------+--------------+
| id|double_value|original_value|
+---+------------+--------------+
|  1|          20|            10|
|  2|          40|            20|
|  3|          60|            30|
+---+------------+--------------+

# Use CASE WHEN to categorize values
df = df.selectExpr("id", "value", "CASE WHEN value >= 20 THEN 'High' ELSE 'Low' END as category")

df.show()
+---+-----+--------+
| id|value|category|
+---+-----+--------+
|  1|   10|     Low|
|  2|   20|    High|
|  3|   30|    High|
+---+-----+--------+

# Apply multiple transformations and expressions
df = df.selectExpr("id", "value", "value * 2 as double_value", "CASE WHEN value >= 20 THEN 'High' ELSE 'Low' END as category")

df.show()
+---+-----+------------+--------+
| id|value|double_value|category|
+---+-----+------------+--------+
|  1|   10|          20|     Low|
|  2|   20|          40|    High|
|  3|   30|          60|    High|
+---+-----+------------+--------+

comparison: expr () and selectExpr ()

Key Differences
expr () is used when you want to apply SQL-like expressions in the middle of a transformation, typically within withColumn() or filter().
selectExpr() is used when you want to apply multiple expressions in a single statement to transform and select columns, much like a SQL SELECT statement.

Featureexpr()selectExpr()
PurposeUsed for applying single SQL expressionsUsed for applying multiple SQL expressions
Typical UsageInside select(), withColumn(), filter()As a standalone method for multiple expressions
Operates OnIndividual column expressionsMultiple expressions at once
FlexibilityAllows complex operations on a single columnSimpler for multiple transformations
Exampledf.select(expr("age + 5").alias("new_age"))df.selectExpr("age + 5 as new_age", "age * 2")
Use CaseFine-grained control of expressions in various transformationsQuickly apply and select multiple expressions as new columns

Conclusion
expr (): Ideal for transforming or adding individual columns using SQL expressions.
selectExpr (): Useful for selecting, renaming, and transforming multiple columns at once using SQL-like syntax.


na.fill ()

na.fill(): Used to replace null values in DataFrames.

Syntax
df.na.fill( {“vaule”:0} )

sample dataframe

data = [(1, 10), (2, 20), (3, 30),(4,None)]
df = spark.createDataFrame(data, [“id”, “value”])
+—+—–+
| id | value|
+—+—–+
| 1 | 10|
| 2 | 20|
| 3 | 30|
| 4 | null|
+—+—–+

caution: in pyspark, “NULL” is None

#Fill null values in a specific column with a default value (e.g., 0)
df = df.na.fill({"value": 0})

df.show()
==output==
+---+-----+
| id|value|
+---+-----+
|  1|   10|
|  2|   20|
|  3|   30|
|  4|    0|
+---+-----+

coalescs ()

coalesce function is used to return the first non-null value among the columns you provide

Syntax

from pyspark.sql.functions import coalesce
coalesce(col1, col2, …, colN)

from pyspark.sql.functions import coalesce

# Return the first non-null value from multiple columns
df = df.withColumn("first_non_null", coalesce(col("column1"), col("column2"), col("column3")))

isin ()

isin function is used to check if a value belongs to a list or set of values.

Syntax
from pyspark.sql.functions import col
col(“column_name”).isin(value1, value2, …, valueN)

sample dataframe

data = [(1, 10), (2, 20), (3, 30),(4,None)]
df = spark.createDataFrame(data, [“id”, “value”])
+—+—–+
| id | value|
+—+—–+
| 1 | 10|
| 2 | 20|
| 3 | 30|
| 4 | null|
+—+—–+

caution: in pyspark, “NULL” is None

from pyspark.sql.functions import col
df = df.withColumn("is_in_list", col("value").isin(18, 25, 30)).show()

df.show()
==output==
+---+-----+----------+
| id|value|is_in_list|
+---+-----+----------+
|  1|   10|     false|
|  2|   20|     false|
|  3|   30|      true|
|  4|    0|     false|
+---+-----+----------+

between ()

The between function allows you to check whether a column’s value falls within a specified range.

Syntax
from pyspark.sql.functions import col
col(“column_name”).between(lower_bound, upper_bound)

sample dataframe

data = [(1, 10), (2, 20), (3, 30),(4,31)]
df = spark.createDataFrame(data, [“id”, “value”])
+—+—–+
| id | value|
+—+—–+
| 1 | 10|
| 2 | 20|
| 3 | 30|
| 4 | 31|
+—+—–+

from pyspark.sql.functions import col
# Check if the value is between 20 and 30
df = df.withColumn("value_between_20_and_30", col("value").between(20, 30)).show()

df.show()
==output==
+---+-----+-----------------------+
| id|value|value_between_20_and_30|
+---+-----+-----------------------+
|  1|   15|                  false|
|  2|   20|                   true|
|  3|   30|                   true|
|  4|   36|                  false|

note: it included boundary value - "20" and "30"

isNull (), isNotNull ()

PySpark provides isNull and isNotNull functions to check for null values in DataFrame columns.

Syntax
col(“column_name”).isNull()
col(“column_name”).isNotNull()

sample dataframe
+—+—-+
| id| age|
+—+—-+
| 1| 15|
| 2|null|
| 3| 45|
+—+—-+

from pyspark.sql.functions import col
# Check if the 'name' column has null values
df = df.withColumn("has_null_name", col("name").isNull())

  

# Check if the 'age' column has non-null values
df = df.withColumn("has_age", col("age").isNotNull()).show()
==output==
+---+----+--------+
| id| age|has_age |
+---+----+--------+
|  1|  25|   true |
|  2|null|  false |
|  3|  45|   true |
+---+----+--------+

Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca

(remove all space from the email account 😊)

withColumn, select

withColumn()

It’s a “transformation”.
withColumn() add or replace a column_name in a DataFrame. In other words, if “column_name” exists, replace/change the existing column, otherwise, add “column_name” as new column.

Syntax:

from pyspark.sql.functions import col, lit, concat, when, upper, coalesce
df.withColumn(“column_name”, expression)

Key Parameters

  • "column_name": The name of the new or existing column.
  • expression: Any transformation, calculation, or function applied to create or modify the column.
Basic Column Creation (with literal values)

from pyspark.sql.functions import lit
# Add a column with a constant value
df_new = df.withColumn(“New_Column”, lit(100))

===output===
ID Name Grade New_Column
1 Alice null 100
2 Bob B 100
3 Charlie C 100

# Add a new column, no value
df_new = df.withColumn(“New_Column”, lit(None))

===output===
ID Name Grade New_Column
1 Alice null null
2 Bob B null
3 Charlie C null

Arithmetic Operation

from pyspark.sql.functions import col
# Create a new column based on arithmetic operations
df_arithmetic = df.withColumn(“New_ID”, col(“ID”) * 2 + 5)
df_arithmetic.show()
===output===
ID Name Grade New_ID
1 Alice null 7
2 Bob B 9
3 Charlie C 11

Using SQL Function

you can use functions like concat(), substring(), when(), length(), etc.

from pyspark.sql.functions import concat, lit
# Concatenate two columns with a separator
df_concat = df.withColumn(“Full_Description”, concat(col(“Name”), lit(” has ID “), col(“ID”)))

Conditional Logic

Using when() and otherwise() is equivalent to SQL’s CASE WHEN expression.

from pyspark.sql.functions import when

# Add a new column with conditional logic
df_conditional = df.withColumn("Is_Adult", when(col("ID") > 18, "Yes").otherwise("No"))
df_conditional.show()
String Function

You can apply string functions like upper(), lower(), or substring()

from pyspark.sql.functions import upper
# Convert a column to uppercase
df_uppercase = df.withColumn(“Uppercase_Name”, upper(col(“Name”)))
df_uppercase.show()

Type Casting

You can cast a column to a different data type.

Cast the ID column to a string

# Cast the ID column to a string
df_cast = df.withColumn(“ID_as_string”, col(“ID”).cast(“string”))
df_cast.show()

Handling Null Values

create columns that handle null values using coalesce() or fill()

Coalesce:

This function returns the first non-null value among its arguments.

from pyspark.sql.functions import coalesce
# Return non-null value between two columns
df_coalesce = df.withColumn(“NonNullValue”, coalesce(col(“Name”), lit(“Unknown”)))
df_coalesce.show()

Fill Missing Values:

# Replace nulls in a column with a default value
df_fill = df.na.fill({“Name”: “Unknown”})
df_fill.show()

Creating Columns with Complex Expressions

create columns based on more complex expressions or multiple transformations at once.

# Create a column with multiple transformations
df_complex = df.withColumn( “Complex_Column”, concat(upper(col(“Name”)), lit(“_”), col(“ID”).cast(“string”)) )
df_complex.show(truncate=False)

example
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, lit, concat, when, upper, coalesce

# Initialize Spark session
spark = SparkSession.builder.appName("withColumnExample").getOrCreate()

# Create a sample DataFrame
data = [(1, "Alice", None), (2, "Bob", "B"), (3, "Charlie", "C")]
df = spark.createDataFrame(data, ["ID", "Name", "Grade"])

# Perform various transformations using withColumn()
df_transformed = df.withColumn("ID_Multiplied", col("ID") * 10) \
                   .withColumn("Full_Description", concat(upper(col("Name")), lit(" - ID: "), col("ID"))) \
                   .withColumn("Pass_Status", when(col("Grade") == "C", "Pass").otherwise("Fail")) \
                   .withColumn("Non_Null_Grade", coalesce(col("Grade"), lit("N/A"))) \
                   .withColumn("ID_as_String", col("ID").cast("string"))

# Show the result
df_transformed.show(truncate=False)
==output==
ID	Name	Grade	ID_Multiplied	Full_Description	Pass_Status	Non_Null_Grade	ID_as_String
1	Alice	null	10	ALICE - ID: 1	Fail	N/A	1
2	Bob	B	20	BOB - ID: 2	Fail	B	2
3	Charlie	C	30	CHARLIE - ID: 3	Pass	C	3

select ()

select () is used to project (select) a set of columns or expressions from a DataFrame. This function allows you to choose and work with specific columns, create new columns, or apply transformations to the data.

Syntax

DataFrame.select(*cols)

Commonly Used PySpark Functions with select()

  • col(column_name): Refers to a column.
  • alias(new_name): Assigns a new name to a column.
  • lit(value): Adds a literal value.
  • round(column, decimals): Rounds off the values in a column.
  • concat(col1, col2, ...): Concatenates multiple columns.
  • when(condition, value): Adds conditional logic.
Renaming Columns:
df.select(df["column1"].alias("new_column1"), df["column2"]).show()

Using Expressions:
from pyspark.sql import functions as F
df.select(F.col("column1"), F.lit("constant_value"), (F.col("column2") + 10).alias("modified_column2")).show()

Performing Calculations
df.select((df["column1"] * 2).alias("double_column1"), F.round(df["column2"], 2).alias("rounded_column2")).show()

Handling Complex Data Types (Struct, Array, Map):
df.select("struct_column.field_name").show()

Selecting with Wildcards:

While PySpark doesn’t support SQL-like wildcards directly, you can achieve similar functionality using selectExpr (discussed below) or other methods like looping over df.columns.

df.select([c for c in df.columns if “some_pattern” in c]).show()

Using selectExpr ()

df.selectExpr(“column1”, “column2 + 10 as new_column2”).show()

Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca

(remove all space from the email account 😊)

Pyspark: read and write a parquet file

Reading Parquet Files

Syntax

help(spark.read.parquet)


df = spark.read \
    .format("parquet") \
    .option("mergeSchema", "true") \  # Merges schemas of all files (useful when reading from multiple files with different schemas)
    .option("pathGlobFilter", "*.parquet") \  # Read only specific files based on file name patterns
    .option("recursiveFileLookup", "true") \  # Recursively read files from directories and subdirectories
.load("/path/to/parquet/file/or/directory")

Options

  • mergeSchema: When reading Parquet files with different schemas, merge them into a single schema.
    • true (default: false)
  • pathGlobFilter: Allows specifying a file pattern to filter which files to read (e.g., “*.parquet”).
  • recursiveFileLookup: Reads files recursively from subdirectories.
    • true (default: false)
  • modifiedBefore/modifiedAfter: Filter files by modification time. For example:
    .option(“modifiedBefore”, “2023-10-01T12:00:00”)
    .option(“modifiedAfter”, “2023-01-01T12:00:00”)
  • maxFilesPerTrigger: Limits the number of files processed in a single trigger, useful for streaming jobs.
  • schema: Provides the schema of the Parquet file (useful when reading files without inferring schema).

from pyspark.sql.types import StructType, StructField, IntegerType, StringTypeschema = StructType([StructField("id", IntegerType(), True),  StructField("name", StringType(), True)]) 

df = spark.read.schema(schema).parquet("/path/to/parquet")

Path
  • Load All Files in a Directory
    df = spark.read.parquet(“/path/to/directory/”)
  • Load Multiple Files Using Comma-Separated Paths
    df = spark.read.parquet(“/path/to/file1.parquet”, “/path/to/file2.parquet”, “/path/to/file3.parquet”)
  • Using Wildcards (Glob Patterns)
    df = spark.read.parquet(“/path/to/directory/*.parquet”)
  • Using Recursive Lookup for Nested Directories
    df = spark.read.option(“recursiveFileLookup”, “true”).parquet(“/path/to/top/directory”)
  • Load Multiple Parquet Files Based on Conditions
    df = spark.read .option(“modifiedAfter”, “2023-01-01T00:00:00”) .parquet(“/path/to/directory/”)
  • Programmatically Load Multiple Files
    file_paths = [“/path/to/file1.parquet”, “/path/to/file2.parquet”, “/path/to/file3.parquet”]
    df = spark.read.parquet(*file_paths)
  • Load Files from External Storage (e.g., S3, ADLS, etc.)
    df = spark.read.parquet(“s3a://bucket-name/path/to/files/”)

Example


# Reading Parquet files with options
df = spark.read \
    .format("parquet") \
    .option("mergeSchema", "true") \
    .option("recursiveFileLookup", "true") \
    .load("/path/to/parquet/files")

Conclusion

To load multiple Parquet files at once, you can:

  • Load an entire directory.
  • Use wildcard patterns to match multiple files.
  • Recursively load from subdirectories.
  • Programmatically pass a list of file paths. These options help streamline your data ingestion process when dealing with multiple Parquet files in Databricks.

Write to parquet

Syntax


# Writing a Parquet file
df.write \
    .format("parquet") \
    .mode("overwrite") \  # Options: "overwrite", "append", "ignore", "error"
    .option("compression", "snappy") \  # Compression options: none, snappy, gzip, lzo, brotli, etc.
    .option("maxRecordsPerFile", 100000) \  # Max number of records per file
    .option("path", "/path/to/output/directory") \
    .partitionBy("year", "month") \  # Partition the output by specific columns
.save()

Options

compression: .option(“compression”, “snappy”)

Specifies the compression codec to use when writing files.
Options: none, snappy (default), gzip, lzo, brotli, lz4, zstd, etc.

maxRecordsPerFile: .option(“maxRecordsPerFile”, 100000)

Controls the number of records per file when writing.
Default: None (no limit).

saveAsTable: saveAsTable(“parquet_table”)

Saves the DataFrame as a table in the catalog.

Save: save()
path:

Defines the output directory or file path.

mode: mode(“overwrite”)

Specifies the behavior if the output path already exists.

  • overwrite: Overwrites existing data.
  • append: Appends to existing data.
  • ignore: Ignores the write operation if data already exists.
  • error or errorifexists: Throws an error if data already exists (default).
Partition: partitionBy(“year”, “month”)

Partitions the output by specified columns

bucketBy: .bucketBy(10, “id”)

Distributes the data into a fixed number of buckets

df.write \
    .bucketBy(10, "id") \
    .sortBy("name") \
.saveAsTable("parquet_table")

Example


# Writing Parquet files with options
df.write \
    .format("parquet") \
    .mode("overwrite") \
    .option("compression", "gzip") \
    .option("maxRecordsPerFile", 50000) \
    .partitionBy("year", "month") \
    .save("/path/to/output/directory")

writing key considerations:

  • Use mergeSchema if the Parquet files have different schemas, but it may increase overhead.
  • Compression can significantly reduce file size, but it can add some processing time during read and write operations.
  • Partitioning by columns is useful for organizing large datasets and improving query performance.

Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca

(remove all space from the email account 😊)

Pyspark: read, write and flattening complex nested json

Reading JSON Files

Syntax

df = spark.read.option(options).schema(schame).json(“/path/to/json/file”)

options

  • multiline: option (“multiline”, “true”)
     If your JSON files contain multiple lines for a single record, you need to enable multiline.
  • Mode: option (“mode”, “FAILFAST”)
    Determines the behavior when the input file contains corrupt records. Available options:
    PERMISSIVE (default): Tries to parse all records and puts corrupt records in a new column _corrupt_record.
    DROPMALFORMED: Drops the corrupted records.
    FAILFAST: Fails when corrupt records are encountered.
  • primitivesAsString: option (“primitivesAsString”, “true”)
    Treats primitives (like int, float, etc.) as strings.
  • allowUnquotedFieldNames: option (“allowUnquotedFieldNames”, “true”)
    Allows reading JSON files with unquoted field names.
  • allowSingleQuotes: (“allowSingleQuotes”, “true”)
    Allows single quotes for field names and values.
  • timestampFormat: option(“timestampFormat”, “yyyy-MM-dd’T’HH:mm:ss”)
    Sets the format for timestamp fields.

Schema


from pyspark.sql.types import StructType, StructField, StringType, IntegerType

schema = StructType([
    StructField("name", StringType(), True),
    StructField("age", IntegerType(), True)
])

Example


df = spark.read.option("multiline", "true") \
               .option("mode", "PERMISSIVE") \
               .schema(schema) \
               .json("/path/to/input/json")


Writing JSON Files

Syntax

df.write. option (options). mode(“overwrite”).json(“/path/to/output/json”)

  • mode: mode(“overwrite”)
    Specifies how to handle existing data. Available options:
    ·  overwrite: Overwrites existing data.
    ·  append: Appends to existing data.
    ·  ignore: Ignores write operation if the file already exists.
    ·  error (default): Throws an error if the file exists
  • compression: option(“compression”, “gzip”)
    Specifies compression for the output file. Available options include gzip, bzip2, none (default).
  • dateFormat: option(“dateFormat”, “yyyy-MM-dd”)
    Sets the format for date fields during writing.
  • timestampFormat: option(“timestampFormat”, “yyyy-MM-dd’T’HH:mm:ss”)
    Sets the format for timestamp fields during writing.
  • ignoreNullFields: option(“ignoreNullFields”, “true”)
    Ignores null fields when writing JSON.
  • lineSep: option(“lineSep”, “\r\n”)
    Custom line separator (default is \n).

Example


df.write.mode("overwrite") \
        .option("compression", "gzip") \
        .option("dateFormat", "yyyy-MM-dd") \
        .json("/path/to/output/json")

Flattening the Nested JSON

Sample Complex JSON

This JSON includes nested objects and arrays. The goal is to flatten the nested structures.

{
  "name": "John",
  "age": 30,
  "address": {
    "street": "123 Main St",
    "city": "New York"
  },
  "contact": {
    "phone": "123-456-7890",
    "email": "john@example.com"
  },
  "orders": [
    {
      "id": 1,
      "item": "Laptop",
      "price": 999.99
    },
    {
      "id": 2,
      "item": "Mouse",
      "price": 49.99
    }
  ]
}

#Reading the Complex JSON
df = spark.read.option(“multiline”, “true”).json(“/path/to/complex.json”)

Step 1: Flattening Nested Objects

Flattening the Nested JSON, use PySpark’s select and explode functions to flatten the structure.


from pyspark.sql.functions import col

df_flattened = df.select(
    col("name"),
    col("age"),
    col("address.street").alias("street"),
    col("address.city").alias("city"),
    col("contact.phone").alias("phone"),
    col("contact.email").alias("email")
)
df_flattened.show(truncate=False)

This will flatten the address and contact fields.

Step 2: Flattening Arrays with explode

For fields that contain arrays (like orders), you can use explode to flatten the array into individual rows.


from pyspark.sql.functions import explode

df_flattened_orders = df.select(
    col("name"),
    col("age"),
    col("address.street").alias("street"),
    col("address.city").alias("city"),
    col("contact.phone").alias("phone"),
    col("contact.email").alias("email"),
    explode(col("orders")).alias("order")
)

# Now flatten the fields inside the "order" structure
df_final = df_flattened_orders.select(
    col("name"),
    col("age"),
    col("street"),
    col("city"),
    col("phone"),
    col("email"),
    col("order.id").alias("order_id"),
    col("order.item").alias("order_item"),
    col("order.price").alias("order_price")
)

df_final.show(truncate=False)

Output

nameagestreetcityphoneemailorder_idorder_itemorder_price
John30123 Main StNew York123-456-7890john@example.com1Laptop999.99
John30123 Main StNew York123-456-7890john@example.com2Mouse49.99

Key Functions Used:

  • col(): Accesses columns of the DataFrame.
  • alias(): Renames a column.
  • explode(): Converts an array into multiple rows, one for each element in the array.

Generalize for Deeper Nested Structures

For deeply nested JSON structures, you can apply this process recursively by continuing to use select, alias, and explode to flatten additional layers.

Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca

(remove all space from the email account 😊)

Pyspark: read and write a csv file

In PySpark, we can read from and write to CSV files using DataFrameReader and DataFrameWriter with the csv method. Here’s a guide on how to work with CSV files in PySpark:

Reading CSV Files in PySpark

Syntax

df = spark.read.format(“csv”).options(options).load(ffile_location).schema(schema_df)

format
  • csv
  • Parquet
  • ORC
  • JSON
  • AVRO
option
  • header = “True”; “False”
  • inferSchema = “True”; ”False”
  • sep=”,” … whatever
file_location
  • load(path1)
  • load(path1,path2……)
  • load(folder)
Schema
  • define a schema
  • Schema
  • my_schema

define a schema


from pyspark.sql.types import StructType, StructField, StringType, IntegerType
# Define the schema
schema = StructType([
    StructField("column1", IntegerType(), True),   # Column1 is Integer, nullable
    StructField("column2", StringType(), True),    # Column2 is String, nullable
    StructField("column3", StringType(), False)    # Column3 is String, non-nullable
])

#or simple format
schema="col1 INTEGER, col2 STRING, col3 STRING, col4 INTEGER"

Example

Read CSV file with header, infer schema, and specify null value


# Read a CSV file with header, infer schema, and specify null value
df = spark.read.format("csv") \
    .option("header", "true") \    # Use the first row as the header
    .option("inferSchema", "true")\ # Automatically infer the schema
    .option("sep", ",") \           # Specify the delimiter
    .load("path/to/input_file.csv")\ # Load the file
    .option("nullValue", "NULL" # Define a string representation of null


# Read multiple CSV files with header, infer schema, and specify null value
df = spark.read.format("csv") \ 
.option("inferSchema", "true")\     
.option("sep", ",") \             
.load("path/file1.csv", "path/file2.csv", "path/file3.csv")\   
.option("nullValue", "NULL")


# Read folder all CSV files with header, infer schema, and specify null value
df = spark.read.format("csv") \ 
.option("inferSchema", "true")\     
.option("sep", ",") \             
.load("/path_folder/)\   
.option("nullValue", "NULL")

When you want to read multiple files into a single Dataframe, if schemas are different, load files into Separate DataFrames, then take additional process to merge them together.

Writing CSV Files in PySpark

Syntax


df.write.format("csv").options(options).save("path/to/output_directory")

Example


# Write the result DataFrame to a new CSV file
result_df.write.format("csv") \
    .option("header", "true") \
    .mode("overwrite") \
    .save("path/to/output_directory")



# Write DataFrame to a CSV file with header, partitioning, and compression

df.write.format("csv") \
  .option("header", "true") \         # Write the header
  .option("compression", "gzip") \    # Use gzip compression
  .partitionBy("year", "month") \ # Partition the output by specified columns
  .mode("overwrite") \                # Overwrite existing data
  .save("path/to/output_directory")   # Specify output directory

By default, If you try to write directly to a file (e.g., name1.csv), it conflicts because Spark doesn’t generate a single file but a collection of part files in a directory.

path
dbfs:/FileStore/name1.csv/_SUCCESS
dbfs:/FileStore/name1.csv/_committed_7114979947112568022
dbfs:/FileStore/name1.csv/_started_7114979947112568022
dbfs:/FileStore/name1.csv/part-00000-tid-7114979947112568022-b2482528-b2f8-4c82-82fb-7c763d91300e-12-1-c000.csv

PySpark writes data in parallel, which results in multiple part files rather than a single CSV file by default. However, you can consolidate the data into a single CSV file by performing a coalesce(1) or repartition(1) operation before writing, which reduces the number of partitions to one.

df.coalesce(1).write.format("csv").mode("overwrite").options(header=True).save("dbfs:/FileStore/name1.csv")

at this time, name1.csv in “dbfs:/FileStore/name1.csv” will treat as a directory, rather than a Filename. PySpark writes the single file with a random name like part-00000-<id>.csv

dbfs:/FileStore/name1.csv/part-00000-tid-4656450869948503591-85145263-6f01-4b56-ad37-3455ca9a8882-9-1-c000.csv

we need take additional step – “Rename the File to name1.csv

# List all files in the directory
files = dbutils.fs.ls("dbfs:/FileStore/name1.csv")

# Filter for the part file
for file in files:
    if file.name.startswith("part-"):
        source_file = file.path  # Full path to the part file
        destination_file = "dbfs:/FileStore/name1.csv"
        
        # Move and rename the file
        dbutils.fs.mv(source_file, destination_file)
        break


display(dbutils.fs.ls ( "dbfs:/FileStore/"))

Direct Write with Custom File Name

PySpark doesn’t natively allow specifying a custom file name directly while writing a file because it writes data in parallel using multiple partitions. However, you can achieve a custom file name with a workaround. Here’s how:

Steps:

  1. Use coalesce(1) to combine all data into a single partition.
  2. Save the file to a temporary location.
  3. Rename the part file to the desired name.
# Combine all data into one partition
df.coalesce(1).write.format("csv") \
    .option("header", "true") \
    .mode("overwrite") \
    .save("dbfs:/FileStore/temp_folder")

# Get the name of the part file
files = dbutils.fs.ls("dbfs:/FileStore/temp_folder")
for file in files:
    if file.name.startswith("part-"):
        part_file = file.path
        break

# Move and rename the part file
dbutils.fs.mv(part_file, "dbfs:/FileStore/name1.csv")

# Remove the temporary folder
dbutils.fs.rm("dbfs:/FileStore/temp_folder", True)

Please do not hesitate to contact me if you have any questions at William . chen @mainri.ca 

(remove all space from the email account 😊)