StructType() in PySpark is part of the pyspark.sql.types module and it is used to define the structure of a DataFrame schema. StructField () is a fundamental part of PySpark’s StructType, used to define individual fields (columns) within a schema. A StructField specifies the name, data type, and other attributes of a column in a DataFrame schema.
fields (optional): A list of StructField objects that define the schema. Each StructField object specifies the name, type, and whether the field can be null.
Key Components
name: The name of the column.
dataType: The data type of the column (e.g., StringType(), IntegerType(), DoubleType(), etc.).
nullable: Boolean flag indicating whether the field can contain null values (True for nullable).
Common Data Types Used in StructField
StringType(): Used for string data.
IntegerType(): For integers.
DoubleType(): For floating-point numbers.
LongType(): For long integers.
ArrayType(): For arrays (lists) of values.
MapType(): For key-value pairs (dictionaries).
TimestampType(): For timestamp fields.
BooleanType(): For boolean values (True/False).
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, IntegerType
# Initialize Spark session
spark = SparkSession.builder.appName("Example").getOrCreate()
# Define schema using StructTypeschema = StructType([
StructField("name", StringType(), True),
StructField("age", IntegerType(), True)
])
# Create DataFrame using the schema
data = [("John", 30), ("Alice", 25)]
df = spark.createDataFrame(data, schema)
df.show()
+-----+---+
| name|age|
+-----+---+
| John| 30|
|Alice| 25|
+-----+---+
Nested Schema
StructType can define a nested schema. For example, a column in the DataFrame might itself contain multiple fields.
The contains() function in PySpark is used to check if a string column contains a specific substring. It’s typically used in a filter() or select() operation to search within the contents of a column and return rows where the condition is true.
Syntax
Column.contains(substring: str)
Key Points
contains() is case-sensitive by default. For case-insensitive matching, use it with lower() or upper().
It works on string columns only. For non-string columns, you would need to cast the column to a string first.
The collect () function simply gathers all rows from the DataFrame or RDD and returns them as a list of Row objects. It does not accept any parameters.
Syntax
DataFrame.collect() not any parameter at all
Key Points
Use on Small Data: Since collect() brings all the data to the driver, it should be used only on small datasets. If you try to collect a very large dataset, it can cause memory issues or crash the driver..
For large datasets, consider using alternatives like take(n), toPandas(), show(n)
sample DF
+-------+---+
| Name|Age|
+-------+---+
| Alice| 25|
| Bob| 30|
|Charlie| 35|
+-------+---+
# Collect all rows from the DataFrame
collected_data = df.collect()
# Access all rows
print(collected_data)
[Row(Name='Alice', Age=25), Row(Name='Bob', Age=30), Row(Name='Charlie', Age=35)]
# Access a row
print(collected_data[0])
Row(Name='Alice', Age=25)
# Access a cell
print(collected_data[0][0])
Alice
# Display the collected data
for row in collected_data:
print(row)
==output==
Row(Name='Alice', Age=25)
Row(Name='Bob', Age=30)
Row(Name='Charlie', Age=35)
# Filter and collect
filtered_data = df.filter(df["Age"] > 30).collect()
# Process collected data
for row in filtered_data:
print(f"{row['Name']} is older than 30.")
==output==
Charlie is older than 30.
# Access specific columns from collected data
for row in collected_data:
print(f"Name: {row['Name']}, Age: {row.Age}")
==output==
Name: Alice, Age: 25
Name: Bob, Age: 30
Name: Charlie, Age: 35
transform ()
The transform () function in PySpark is a higher-order function introduced to apply custom transformations to columns in a DataFrame. It allows you to perform a transformation function on an existing column, returning the transformed data as a new column. It is particularly useful when working with complex data types like arrays or for applying custom logic to column values.
Syntax
df1 = df.transform(my_function)
Parameters
my_function: a python function
Key point
The transform() method takes a function as an argument. It automatically passes the DataFrame (in this case, df) to the function. So, you only need to pass the function name “my_function"
sample DF
+-------+---+
| Name|Age|
+-------+---+
| Alice| 25|
| Bob| 30|
|Charlie| 35|
+-------+---+
from pyspark.sql.functions import upper
#Declare my function
def addTheAge(mydf):
return mydf.withColumn('age',mydf.age + 2)
def upcaseTheName(mydf):
reture mydf.withColumn("Name", upper(mydf.Name))
#transforming: age add 2 years
df1=df.transform(addTheAge)
df1.show()
+-------+---+
| Name|Age|
+-------+---+
| Alice| 27|
| Bob| 32|
|Charlie| 37|
+-------+---+
The transform () method takes a function as an argument. It automatically passes the DataFrame (in this case, df) to the function. So, you only need to pass the function name "my_function".
#transforming to upcase
df1=df.transform(upcaseTheName)
df1.show()
+-------+---+
| Name|Age|
+-------+---+
| ALICE| 25|
| BOB| 30|
|CHARLIE| 35|
+-------+---+
#transforming to upcase and age add 2 years
df1=df.transform(addTheAge).transform(upcaseTheName)
df1.show()
+-------+---+
| Name|Age|
+-------+---+
| ALICE| 27|
| BOB| 32|
|CHARLIE| 37|
+-------+---+
udf()
The udf (User Defined Function) allows you to create custom transformations for DataFrame columns using Python functions. You can use UDFs when PySpark’s built-in functions don’t cover your use case or when you need more complex logic.
Syntax
from pyspark.sql.functions import udf from pyspark.sql.types import DataType # Define a UDF function , # Register the function as a UDF my_udf = udf(py_function, returnType)
Parameters
py_function: A Python function you define to transform the data.
returnType: PySpark data type (e.g., StringType(), IntegerType(), DoubleType(), etc.) that indicates what type of data your UDF returns.
StringType(): For returning strings.
IntegerType(): For integers.
FloatType(): For floating-point numbers.
BooleanType(): For booleans.
ArrayType(DataType): For arrays.
StructType(): For structured data.
Key point
You need to specify the return type for the UDF, as PySpark needs to understand how to handle the results of the UDF.
sample DF
+-------+---+
| Name|Age|
+-------+---+
| Alice| 25|
| Bob| 30|
|Charlie| 35|
+-------+---+
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
# Define a Python function
def to_upper(name):
return name.upper()
# Register the function as a UDF, specifying the return type as StringType
uppercase_udf = udf(to_upper, StringType())
# Apply the UDF using withColumn
df_upper = df.withColumn("Upper_Name", uppercase_udf(df["Name"]))
df_upper.show()
+-------+---+----------+
| Name|Age|Upper_Name|
+-------+---+----------+
| Alice| 25| ALICE|
| Bob| 30| BOB|
|Charlie| 35| CHARLIE|
+-------+---+----------+
# UDF Returning Boolean
from pyspark.sql.functions import udf
from pyspark.sql.types import BooleanType
# Define a Python function
def is_adult(age):
return age > 30
# Register the UDF
is_adult_udf = udf(is_adult, BooleanType())
# Apply the UDF
df_adult = df.withColumn("Is_Adult", is_adult_udf(df["Age"]))
# Show the result
df_adult.show()
+-------+---+--------+
| Name|Age|Is_Adult|
+-------+---+--------+
| Alice| 25| false|
| Bob| 30| false|
|Charlie| 35| true|
+-------+---+--------+
# UDF with Multiple Columns (Multiple Arguments)
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
# Define a Python function that concatenates two columns
def concat_name_age(name, age):
return f"{name} is {age} years old"
# Register the UDF
concat_udf = udf(concat_name_age, StringType())
# Apply the UDF to multiple columns
df_concat = df.withColumn("Description", concat_udf(df["Name"], df["Age"]))
# Show the result
df_concat.show()
+-------+---+--------------------+
| Name|Age| Description|
+-------+---+--------------------+
| Alice| 25|Alice is 25 years...|
| Bob| 30| Bob is 30 years old|
|Charlie| 35|Charlie is 35 yea...|
+-------+---+--------------------+
spark.udf.register(),Register for SQL query
in PySpark, you can use spark.udf.register() to register a User Defined Function (UDF) so that it can be used not only in DataFrame operations but also in SQL queries. This allows you to apply your custom Python functions directly within SQL statements executed against your Spark session.
registered_pyFun_for_sql: The name of the UDF, which will be used in SQL queries.
original_pyFun: The original Python function that contains the custom logic.
returnType: The return type of the UDF, which must be specified (e.g., StringType(), IntegerType()).
smaple df
+-------+---+
| Name|Age|
+-------+---+
| Alice| 25|
| Bob| 30|
|Charlie| 35|
+-------+---+
from pyspark.sql import SparkSession
from pyspark.sql.types import StringType
# Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")
# Define a Python function
def original_myPythonFun(name):
return name.upper()
# Register the function as a UDF for SQL with the return type StringType
spark.udf.register("registered_pythonFun_for_sql"\
, original_myPythonFun\
, StringType()\
)
# Use the UDF - "registered_pythonFun_for_sql" in a SQL query
result = spark.sql(\
"SELECT Name, registered_pythonFun_for_sql(Name) AS Upper_Name \
FROM people"\
)
result.show()
+-------+----------+
| Name|Upper_Name|
+-------+----------+
| Alice| ALICE|
| Bob| BOB|
|Charlie| CHARLIE|
+-------+----------+
we can directly use SQL style with magic %sql
%sql
SELECT Name
, registered_pythonFun_for_sql(Name) AS Upper_Name
FROM people
+-------+----------+
| Name|Upper_Name|
+-------+----------+
| Alice| ALICE|
| Bob| BOB|
|Charlie| CHARLIE|
+-------+----------+
A complex python function declares, udf register, and apply example
Define the Python function to handle multiple columns and scalars
# Define the Python function to handle multiple columns and scalars
def pyFun(col1, col2, col3, col9, int1, int2, int3, str1, str2, str3):
# Example business logic
re_value1 = col1 * int1 + len(str1)
re_value2 = col2 + col9 + len(str2)
re_value3 = col3 * int3 + len(str3)
value4 = re_value1 + re_value2 + re_value3
# Return multiple values as a tuple
return re_value1, re_value2, re_value3, value4
Define the return schema for the UDF
# Define the return schema for the UDF
return_schema = StructType([
StructField("re_value1", IntegerType(), True),
StructField("re_value2", IntegerType(), True),
StructField("re_value3", IntegerType(), True),
StructField("value4", IntegerType(), True)
])
Register the UDF
# register the UDF
# for SQL use this
# spark.udf.register("pyFun_udf", pyFun, returnType=return_schema)
pyFun_udf = udf(pyFun, returnType=return_schema)
Apply the UDF to the DataFrame, using ‘lit()’ for constant values
# Apply the UDF to the DataFrame, using 'lit()' for constant values
df_with_udf = df.select(
col("col1"),
col("col2"),
col("col3"),
col("col9"),
col("str1"),
col("str2"),
col("str3"),
pyFun_udf(
col("col1"),
col("col2"),
col("col3"),
col("col9"),
lit(10), # Use lit() for the constant integer values
lit(20),
lit(30),
col("str1"),
col("str2"),
col("str3")
).alias("result")
)
# Show the result
df_with_udf.show(truncate=False)
==output==
+----+----+----+----+-----+-------+-----+------------------+
|col1|col2|col3|col9|str1 |str2 |str3 |result |
+----+----+----+----+-----+-------+-----+------------------+
|1 |2 |3 |9 |alpha|beta |gamma|{15, 15, 95, 125} |
|4 |5 |6 |8 |delta|epsilon|zeta |{45, 20, 184, 249}|
+----+----+----+----+-----+-------+-----+------------------+
The join() method is used to combine two DataFrames based on a common column or multiple columns. This method is extremely versatile, supporting various types of SQL-style joins such as inner, outer, left, and right joins.
Syntax
DataFrame.join(other, on=None, how=None)
Parameters
other: The other DataFrame to join with the current DataFrame.
on: A string or a list of column names on which to join. This can also be an expression (using col() or expr()).
how: The type of join to perform. It can be one of
'inner': Inner join (default). Returns rows that have matching values in both DataFrames.
'outer' or 'full': Full outer join. Returns all rows from both DataFrames, with null values for missing matches.
'left' or 'left_outer': Left outer join. Returns all rows from the left DataFrame and matched rows from the right DataFrame. Unmatched rows from the right DataFrame result in null values.
'right' or 'right_outer': Right outer join. Returns all rows from the right DataFrame and matched rows from the left DataFrame. Unmatched rows from the left DataFrame result in null values.
'left_semi': Left semi join. Returns only the rows from the left DataFrame where the join condition is satisfied.
'left_anti': Left anti join. Returns only the rows from the left DataFrame where no match is found in the right DataFrame.
'cross': Cross join (Cartesian product). Returns the Cartesian product of both DataFrames, meaning every row from the left DataFrame is combined with every row from the right DataFrame.
Others are the same as SQL. new, let’s focus on Semi and Anti Joins
Left Semi Join: Only returns rows from the left DataFrame that have matches in the right DataFrame.
Left Anti Join: Only returns rows from the left DataFrame that don’t have matches in the right DataFrame.
# Left semi join
df_left_semi = df1.join(df2, on="dept_id", how="left_semi")
df_left_semi.show()
==output==
+-------+-----+
|dept_id| name|
+-------+-----+
| 1|Alice|
| 2| Bob|
+-------+-----+
Charlie's dep_Id=3. it does not appear in df2, so skipped it.
# Left anti join
df_left_anti = df1.join(df2, on="dept_id", how="left_anti")
df_left_anti.show()
==output==
+-------+-------+
|dept_id| name|
+-------+-------+
| 3|Charlie|
+-------+-------+
Only Charlie, dep_Id=3, does not appear in df2, so return it only.
union ()
The union() method is used to combine two DataFrames with the same schema (i.e., same number and type of columns). This operation concatenates the rows of the two DataFrames, similar to a SQL UNION operation, but without removing duplicate rows (like UNION ALL in SQL).
Syntax
DataFrame.union(other)
Key Points
Schema Compatibility: Both DataFrames must have the same number of columns, and the data types of the corresponding columns must match.
Union Behavior: Unlike SQL’s UNION which removes duplicates, union() in PySpark keeps all rows, including duplicates. This is equivalent to SQL’s UNION ALL.
Order of Rows: The rows from the first DataFrame will appear first, followed by the rows from the second DataFrame.
Column Names and Data Types Must Match: The column names don’t need to be identical in both DataFrames, but their positions and data types must match. If the number of columns or the data types don’t align, an error will be raised.
Union with Different Column Names: Even though column names don’t need to be the same, the columns are merged by position, not by name. If you attempt to union() DataFrames with different column orders, the results could be misleading. Therefore, it’s important to make sure the schemas match.
The unionByName() method in PySpark is similar to the union() method but with a key distinction: it merges two DataFrames by aligning columns based on column names, rather than their positions.
other: The other DataFrame to be unioned with the current DataFrame.
allowMissingColumns: A boolean flag (False by default). If True, this allows the union of DataFrames even if one DataFrame has columns that are missing in the other. The missing columns in the other DataFrame will be filled with null values.
Key Points
Column Name Alignment: The method aligns columns by name, not by their position, which makes it flexible for combining DataFrames that have different column orders.
Handling Missing Columns: By default, if one DataFrame has columns that are missing in the other, PySpark will throw an error. However, setting allowMissingColumns=True allows unioning in such cases, and missing columns in one DataFrame will be filled with null values in the other.
Duplicate Rows: Just like union(), unionByName() does not remove duplicates, and the result includes all rows from both DataFrames.
unionAll() was an older method used to combine two DataFrames without removing duplicates. However, starting from PySpark 2.0, unionAll() has been deprecated and replaced by union(). The behavior of unionAll() is now identical to that of union() in PySpark.
look at union () in detail.
fillna (), df.na.fill()
fillna() is a method used to replace null (or missing) values in a DataFrame with a specified value. Return new DataFrame with null values replaced by the specified value.
Syntax
DataFrame.fillna(value, subset=None)
df.na.fill(value, subset=None)
df.na.fill(value, subset=None) has the result of df.fillna().
Parameters
value: The value to replace null with. It can be a scalar value (applied across all columns) or a dictionary (to specify column-wise replacement values). The type of value should match the type of the column you are applying it to (e.g., integers for integer columns, strings for string columns).
subset: Specifies the list of column names where the null values will be replaced. If not provided, the replacement is applied to all columns.
sample df
+-------+----+----+
| name| age|dept|
+-------+----+----+
| Alice| 25|null|
| Bob|null| HR|
|Charlie| 30|null|
+-------+----+----+
df.printSchema()
root
|-- name: string (nullable = true)
|-- age: long (nullable = true)
|-- dept: string (nullable = true)
"age" is long, "dept" is string
# Fill null values with default values for all columns
df_filled = df.fillna(0)
==output==
+-------+---+----+
| name|age|dept|
+-------+---+----+
| Alice| 25|null|
| Bob| 0| HR|
|Charlie| 30|null|
+-------+---+----+
Bob's age is filled with 0, since it is "long", and "Dept" column did not fill, still remains "null".
Handle different Columns with different data type
# Fill nulls in the 'age' column with 0 and in the 'dept' column with "Unknown"
df_filled_columns = df.fillna({"age": 0, "dept": "Unknown"})
df_filled_columns.show()
==output==
+-------+---+-------+
| name|age| dept|
+-------+---+-------+
| Alice| 25|Unknown|
| Bob| 0| HR|
|Charlie| 30|Unknown|
Fill Nulls in Specific Subset of Columns
# Fill null values only in the 'age' column
df_filled_age = df.fillna(0, subset=["age"])
df_filled_age.show()
+-------+---+----+
| name|age|dept|
+-------+---+----+
| Alice| 25|null|
| Bob| 0| HR|
|Charlie| 30|null|
+-------+---+----+
select()
select() is used to project a subset of columns from a DataFrame or to create new columns based on expressions. It returns a new DataFrame containing only the selected columns or expressions.
distinct () is used to remove duplicate rows from a DataFrame or RDD, leaving only unique rows. It returns a new DataFrame that contains only unique rows from the original DataFrame.
dropDuplicates () is used to remove duplicate rows from a DataFrame based on one or more specific columns.
Syntax:
DataFrame.dropDuplicates([col1, col2, …, coln])
Parameters
cols (optional): This is a list of column names based on which you want to drop duplicates. If no column names are provided, dropDuplicates() will behave similarly to distinct(), removing duplicates across all columns.
# Drop duplicates across all columns (similar to distinct)
df_no_duplicates = df.dropDuplicates()
==output==
+-------+---+
| name|age|
+-------+---+
| Alice| 25|
| Bob| 30|
|Charlie| 35|
+-------+---+
# Drop duplicates based on the "name" column
df_unique_names = df.dropDuplicates(["name"])
==output==
+-------+---+
| name|age|
+-------+---+
| Alice| 25|
| Bob| 30|
|Charlie| 35|
+-------+---+
In the second case, only the first occurrence of each name is kept, while duplicates are removed, regardless of other columns.
orderBy(), sort ()
orderBy() or sort () method is used to sort the rows of a DataFrame based on one or more columns in ascending or descending order. It is equivalent to the SQL ORDER BY clause. The method returns a new DataFrame that is sorted based on the provided column(s).
In PySpark, both orderBy() and sort() methods are available, and they are essentially aliases of each other, with no functional difference. You can use either based on preference:
# Group by department and count the number of employees in each department
df_grouped = df.groupBy("department").count()
==output==
+----------+-----+
|department|count|
+----------+-----+
| Sales| 3|
| HR| 2|
+----------+-----+
# Group by multiple columns
original dataset
+-------+----------+------+
| name|department|gender|
+-------+----------+------+
| Alice| Sales|Female|
| Bob| Sales| Male|
|Charlie| HR| Male|
| David| HR| Male|
| Eve| Sales|Female|
+-------+----------+------+
# Group by department and gender, then count the number of employees in each group
df_grouped_multi = df.groupBy("department", "gender").count()
+----------+------+-----+
|department|gender|count|
+----------+------+-----+
| Sales|Female| 2|
| Sales| Male| 1|
| HR| Male| 2|
+----------+------+-----+
agg ()
agg() function in PySpark is used for performing aggregate operations on a DataFrame, such as computing sums, averages, counts, and other aggregations. it is often used in combination with groupBy() to perform group-wise aggregations.
Syntax:
from pyspark.sql.functions import sum, avg, count, max, min DataFrame.agg(*exprs)
This can be a string representing the data type (e.g., "int", "double", "string", etc.) or a PySpark DataType object (like IntegerType(), StringType(), FloatType(), etc.).
Common Data Types:
IntegerType(), "int": For integer values.
DoubleType(), "double": For double (floating-point) values.
FloatType(), "float": For floating-point numbers.
StringType(), "string": For text or string values.
DateType(), "date": For date values.
TimestampType(), "timestamp": For timestamps.
BooleanType(), "boolean": For boolean values (true/false).
from pyspark.sql.functions import col
# Cast a string column to integer
df1 = df.withColumn("age_int", col("age").cast("int"))
df1.printSchema()
==output==
root
|-- id: long (nullable = true)
|-- age: long (nullable = true)
|-- age_int: integer (nullable = true)
# Cast 'id' from long to string and 'age' from long to double
df_casted = df.withColumn("id", col("id").cast("int")) \
.withColumn("age", col("age").cast("double"))
df_casted.show()
df_casted.printSchema()
==output==
+---+----+
| id| age|
+---+----+
| 1|25.0|
| 2|12.0|
| 3|40.0|
+---+----+
root
|-- id: string (nullable = true)
|-- age: double (nullable = true)
filter (), where (),
filter () or where () function is used to filter rows from a DataFrame based on a condition or set of conditions. It works similarly to SQL’s WHERE clause,
df.filter(condition) df.where(condition)
Condition (for ‘filter’)
& (AND)
| (OR)
~ (NOT)
== (EQUAL)
all “filter” can change to “where”, vice versa.
sample dataframe
+------+---+-------+
| Name|Age|Salary|
+------+---+-------+
| Alice| 30| 50000|
| Bob| 25| 30000|
|Alicia| 40| 80000|
| Ann| 32| 35000|
+------+---+-------+
# Filter rows where age is greater than 30 AND salary is greater than 50000
df.filter((df["age"] > 30) & (df["salary"] > 50000))
df.where((df["age"] > 30) & (df["salary"] > 50000))
+------+---+------+
| Name|Age|Salary|
+------+---+------+
|Alicia| 40| 80000|
+------+---+------+
# Filter rows where age is less than 25 OR salary is less than 40000
df.filter((df["age"] < 25) | (df["salary"] < 40000))
df.where((df["age"] < 25) | (df["salary"] < 40000))
+----+---+------+
|Name|Age|Salary|
+----+---+------+
| Bob| 25| 30000|
| Ann| 32| 35000|
+----+---+------+
like ()
like() function is used to perform pattern matching on string columns, similar to the SQL LIKE operator
df.filter(df[“column_name”].like(“pattern”))
Pattern
%: Represents any sequence of characters.
_: Represents a single character.
pattern is case sensitive.
sample dataframe
+------+---+
| Name|Age|
+------+---+
| Alice| 30|
| Bob| 25|
|Alicia| 28|
| Ann| 32|
+------+---+
# Filtering names that start with 'Al'
df.filter(df["Name"].like("Al%")).show()
+------+---+
| Name|Age|
+------+---+
| Alice| 30|
|Alicia| 28|
+------+---+
# Filtering names that end with 'n'
df.filter(df["Name"].like("%n")).show()
+----+---+
|Name|Age|
+----+---+
| Ann| 32|
+----+---+
# Filtering names that contain 'li'
df.filter(df["Name"].like("%li%")).show()
+------+---+
| Name|Age|
+------+---+
| Alice| 30|
|Alicia| 28|
+------+---+
# Filtering names where the second letter is 'l'
df.filter(df["Name"].like("A_l%")).show()
+----+---+
|Name|Age|
+----+---+
+----+---+
nothing found in this pattern
Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca
In PySpark, there isn’t an explicit “if-else" statement construct like in regular Python. Instead, PySpark provides several ways to implement conditional logic using functions such as when (), otherwise (), withColumn(),expr (), UDF etc.
using when (), expr() look at following sections. now focus on UDF to implement “if — then — else –” logic”.
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
# Define a Python function for age classification
def classify_age(age):
if age >= 18:
return 'Adult'
else:
return 'Minor'
# Register the function as a UDF
classify_age_udf = udf(classify_age, StringType())
# Create the DataFrame
data = [(1, 25), (2, 12), (3, 40)]
df = spark.createDataFrame(data, ["id", "age"])
+---+---+
| id|age|
+---+---+
| 1| 25|
| 2| 12|
| 3| 40|
+---+---+
# Apply the UDF to create a new column with the if-else logic
df = df.withColumn("age_group", classify_age_udf(df["age"]))
df.show()
+---+---+---------+
| id|age|age_group|
+---+---+---------+
| 1| 25| Adult|
| 2| 12| Minor|
| 3| 40| Adult|
+---+---+---------+
In this example:
The function classify_age behaves like a Python if-else statement.
The UDF (classify_age_udf) applies this logic to the DataFrame.
when (), otherwise ()
when function in PySpark is used for conditional expressions, similar to SQL’s CASE WHEN clause.
Syntax
from pyspark.sql.functions import when when(condition, value).otherwise(default_value)
Parameters
condition: A condition that returns a boolean (True/False). If this condition is true, the function will return the specified value.
value: The value to return when the condition is true.
otherwise(default_value): An optional method that specifies the default value to return when the condition is false.
The expr () function allows you to use SQL expressions as a part of the DataFrame transformation logic.
Syntax
expr () from pyspark.sql.functions import expr expr(sql_expression)
Parameters:
sql_expression: A string containing a SQL-like expression to be applied to the DataFrame. It can contain any valid SQL operations, such as arithmetic operations, column references, conditional logic, or function calls.
The selectExpr() method allows you to directly select columns or apply SQL expressions on multiple columns simultaneously, similar to SQL’s SELECT statement.
Syntax
from pyspark.sql.functions import selectExpr
df.selectExpr(*sql_expressions)
Parameters:
sql_expression: A list of SQL-like expressions (as strings) that define how to transform or select columns. Each expression can involve selecting a column, renaming it, applying arithmetic, or adding conditions using SQL syntax.
from pyspark.sql.functions import selectExpr
# Select specific columns and rename them using selectExpr()
df = df.selectExpr("id", "value * 2 as double_value", "value as original_value")
df.show()
==output==
+---+------------+--------------+
| id|double_value|original_value|
+---+------------+--------------+
| 1| 20| 10|
| 2| 40| 20|
| 3| 60| 30|
+---+------------+--------------+
# Use CASE WHEN to categorize values
df = df.selectExpr("id", "value", "CASE WHEN value >= 20 THEN 'High' ELSE 'Low' END as category")
df.show()
+---+-----+--------+
| id|value|category|
+---+-----+--------+
| 1| 10| Low|
| 2| 20| High|
| 3| 30| High|
+---+-----+--------+
# Apply multiple transformations and expressions
df = df.selectExpr("id", "value", "value * 2 as double_value", "CASE WHEN value >= 20 THEN 'High' ELSE 'Low' END as category")
df.show()
+---+-----+------------+--------+
| id|value|double_value|category|
+---+-----+------------+--------+
| 1| 10| 20| Low|
| 2| 20| 40| High|
| 3| 30| 60| High|
+---+-----+------------+--------+
comparison: expr () and selectExpr ()
Key Differences expr () is used when you want to apply SQL-like expressions in the middle of a transformation, typically within withColumn() or filter(). selectExpr() is used when you want to apply multiple expressions in a single statement to transform and select columns, much like a SQL SELECT statement.
Feature
expr()
selectExpr()
Purpose
Used for applying single SQL expressions
Used for applying multiple SQL expressions
Typical Usage
Inside select(), withColumn(), filter()
As a standalone method for multiple expressions
Operates On
Individual column expressions
Multiple expressions at once
Flexibility
Allows complex operations on a single column
Simpler for multiple transformations
Example
df.select(expr("age + 5").alias("new_age"))
df.selectExpr("age + 5 as new_age", "age * 2")
Use Case
Fine-grained control of expressions in various transformations
Quickly apply and select multiple expressions as new columns
Conclusion expr (): Ideal for transforming or adding individual columns using SQL expressions. selectExpr (): Useful for selecting, renaming, and transforming multiple columns at once using SQL-like syntax.
na.fill ()
na.fill(): Used to replace null values in DataFrames.
#Fill null values in a specific column with a default value (e.g., 0)
df = df.na.fill({"value": 0})
df.show()
==output==
+---+-----+
| id|value|
+---+-----+
| 1| 10|
| 2| 20|
| 3| 30|
| 4| 0|
+---+-----+
coalescs ()
coalesce function is used to return the first non-null value among the columns you provide
Syntax
from pyspark.sql.functions import coalesce coalesce(col1, col2, …, colN)
from pyspark.sql.functions import coalesce
# Return the first non-null value from multiple columns
df = df.withColumn("first_non_null", coalesce(col("column1"), col("column2"), col("column3")))
isin ()
isin function is used to check if a value belongs to a list or set of values.
Syntax from pyspark.sql.functions import col col(“column_name”).isin(value1, value2, …, valueN)
from pyspark.sql.functions import col
# Check if the value is between 20 and 30
df = df.withColumn("value_between_20_and_30", col("value").between(20, 30)).show()
df.show()
==output==
+---+-----+-----------------------+
| id|value|value_between_20_and_30|
+---+-----+-----------------------+
| 1| 15| false|
| 2| 20| true|
| 3| 30| true|
| 4| 36| false|
note: it included boundary value - "20" and "30"
isNull (), isNotNull ()
PySpark provides isNull and isNotNull functions to check for null values in DataFrame columns.
It’s a “transformation”. withColumn() add or replace a column_name in a DataFrame. In other words, if “column_name” exists, replace/change the existing column, otherwise, add “column_name” as new column.
"column_name": The name of the new or existing column.
expression: Any transformation, calculation, or function applied to create or modify the column.
Basic Column Creation (with literal values)
from pyspark.sql.functions import lit # Add a column with a constant value df_new = df.withColumn(“New_Column”, lit(100)) ===output=== ID Name Grade New_Column 1 Alice null 100 2 Bob B 100 3 Charlie C 100
# Add a new column, no value df_new = df.withColumn(“New_Column”, lit(None)) ===output=== ID Name Grade New_Column 1 Alice null null 2 Bob B null 3 Charlie C null
Arithmetic Operation
from pyspark.sql.functions import col # Create a new column based on arithmetic operations df_arithmetic = df.withColumn(“New_ID”, col(“ID”) * 2 + 5) df_arithmetic.show() ===output=== ID Name Grade New_ID 1 Alice null 7 2 Bob B 9 3 Charlie C 11
Using SQL Function
you can use functions like concat(), substring(), when(), length(), etc.
from pyspark.sql.functions import concat, lit # Concatenate two columns with a separator df_concat = df.withColumn(“Full_Description”, concat(col(“Name”), lit(” has ID “), col(“ID”)))
Conditional Logic
Using when() and otherwise() is equivalent to SQL’s CASE WHEN expression.
from pyspark.sql.functions import when
# Add a new column with conditional logic
df_conditional = df.withColumn("Is_Adult", when(col("ID") > 18, "Yes").otherwise("No"))
df_conditional.show()
String Function
You can apply string functions like upper(), lower(), or substring()
from pyspark.sql.functions import upper # Convert a column to uppercase df_uppercase = df.withColumn(“Uppercase_Name”, upper(col(“Name”))) df_uppercase.show()
Type Casting
You can cast a column to a different data type.
Cast the ID column to a string
# Cast the ID column to a string df_cast = df.withColumn(“ID_as_string”, col(“ID”).cast(“string”)) df_cast.show()
Handling Null Values
create columns that handle null values using coalesce() or fill()
Coalesce:
This function returns the first non-null value among its arguments.
from pyspark.sql.functions import coalesce # Return non-null value between two columns df_coalesce = df.withColumn(“NonNullValue”, coalesce(col(“Name”), lit(“Unknown”))) df_coalesce.show()
Fill Missing Values:
# Replace nulls in a column with a default value df_fill = df.na.fill({“Name”: “Unknown”}) df_fill.show()
Creating Columns with Complex Expressions
create columns based on more complex expressions or multiple transformations at once.
# Create a column with multiple transformations df_complex = df.withColumn( “Complex_Column”, concat(upper(col(“Name”)), lit(“_”), col(“ID”).cast(“string”)) ) df_complex.show(truncate=False)
example
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, lit, concat, when, upper, coalesce
# Initialize Spark session
spark = SparkSession.builder.appName("withColumnExample").getOrCreate()
# Create a sample DataFrame
data = [(1, "Alice", None), (2, "Bob", "B"), (3, "Charlie", "C")]
df = spark.createDataFrame(data, ["ID", "Name", "Grade"])
# Perform various transformations using withColumn()
df_transformed = df.withColumn("ID_Multiplied", col("ID") * 10) \
.withColumn("Full_Description", concat(upper(col("Name")), lit(" - ID: "), col("ID"))) \
.withColumn("Pass_Status", when(col("Grade") == "C", "Pass").otherwise("Fail")) \
.withColumn("Non_Null_Grade", coalesce(col("Grade"), lit("N/A"))) \
.withColumn("ID_as_String", col("ID").cast("string"))
# Show the result
df_transformed.show(truncate=False)
==output==
ID Name Grade ID_Multiplied Full_Description Pass_Status Non_Null_Grade ID_as_String
1 Alice null 10 ALICE - ID: 1 Fail N/A 1
2 Bob B 20 BOB - ID: 2 Fail B 2
3 Charlie C 30 CHARLIE - ID: 3 Pass C 3
select ()
select () is used to project (select) a set of columns or expressions from a DataFrame. This function allows you to choose and work with specific columns, create new columns, or apply transformations to the data.
Syntax
DataFrame.select(*cols)
Commonly Used PySpark Functions with select()
col(column_name): Refers to a column.
alias(new_name): Assigns a new name to a column.
lit(value): Adds a literal value.
round(column, decimals): Rounds off the values in a column.
Renaming Columns:
df.select(df["column1"].alias("new_column1"), df["column2"]).show()
Using Expressions:
from pyspark.sql import functions as F
df.select(F.col("column1"), F.lit("constant_value"), (F.col("column2") + 10).alias("modified_column2")).show()
Performing Calculations
df.select((df["column1"] * 2).alias("double_column1"), F.round(df["column2"], 2).alias("rounded_column2")).show()
Handling Complex Data Types (Struct, Array, Map):
df.select("struct_column.field_name").show()
Selecting with Wildcards:
While PySpark doesn’t support SQL-like wildcards directly, you can achieve similar functionality using selectExpr (discussed below) or other methods like looping over df.columns.
df.select([c for c in df.columns if “some_pattern” in c]).show()
Using selectExpr ()
df.selectExpr(“column1”, “column2 + 10 as new_column2”).show()
Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca
df = spark.read \
.format("parquet") \
.option("mergeSchema", "true") \ # Merges schemas of all files (useful when reading from multiple files with different schemas)
.option("pathGlobFilter", "*.parquet") \ # Read only specific files based on file name patterns
.option("recursiveFileLookup", "true") \ # Recursively read files from directories and subdirectories
.load("/path/to/parquet/file/or/directory")
Options
mergeSchema: When reading Parquet files with different schemas, merge them into a single schema.
true (default: false)
pathGlobFilter: Allows specifying a file pattern to filter which files to read (e.g., “*.parquet”).
recursiveFileLookup: Reads files recursively from subdirectories.
true (default: false)
modifiedBefore/modifiedAfter: Filter files by modification time. For example: .option(“modifiedBefore”, “2023-10-01T12:00:00”) .option(“modifiedAfter”, “2023-01-01T12:00:00”)
maxFilesPerTrigger: Limits the number of files processed in a single trigger, useful for streaming jobs.
schema: Provides the schema of the Parquet file (useful when reading files without inferring schema).
Programmatically pass a list of file paths. These options help streamline your data ingestion process when dealing with multiple Parquet files in Databricks.
Write to parquet
Syntax
# Writing a Parquet file
df.write \
.format("parquet") \
.mode("overwrite") \ # Options: "overwrite", "append", "ignore", "error"
.option("compression", "snappy") \ # Compression options: none, snappy, gzip, lzo, brotli, etc.
.option("maxRecordsPerFile", 100000) \ # Max number of records per file
.option("path", "/path/to/output/directory") \
.partitionBy("year", "month") \ # Partition the output by specific columns
.save()
Options
compression: .option(“compression”, “snappy”)
Specifies the compression codec to use when writing files. Options: none, snappy (default), gzip, lzo, brotli, lz4, zstd, etc.
multiline: option (“multiline”, “true”) If your JSON files contain multiple lines for a single record, you need to enable multiline.
Mode: option (“mode”, “FAILFAST”) Determines the behavior when the input file contains corrupt records. Available options: PERMISSIVE (default): Tries to parse all records and puts corrupt records in a new column _corrupt_record. DROPMALFORMED: Drops the corrupted records. FAILFAST: Fails when corrupt records are encountered.
mode: mode(“overwrite”) Specifies how to handle existing data. Available options: · overwrite: Overwrites existing data. · append: Appends to existing data. · ignore: Ignores write operation if the file already exists. · error (default): Throws an error if the file exists
compression: option(“compression”, “gzip”) Specifies compression for the output file. Available options include gzip, bzip2, none (default).
dateFormat: option(“dateFormat”, “yyyy-MM-dd”) Sets the format for date fields during writing.
timestampFormat: option(“timestampFormat”, “yyyy-MM-dd’T’HH:mm:ss”) Sets the format for timestamp fields during writing.
ignoreNullFields: option(“ignoreNullFields”, “true”) Ignores null fields when writing JSON.
lineSep: option(“lineSep”, “\r\n”) Custom line separator (default is \n).
#Reading the Complex JSON df = spark.read.option(“multiline”, “true”).json(“/path/to/complex.json”)
Step 1: Flattening Nested Objects
Flattening the Nested JSON, use PySpark’s select and explode functions to flatten the structure.
from pyspark.sql.functions import col
df_flattened = df.select(
col("name"),
col("age"),
col("address.street").alias("street"),
col("address.city").alias("city"),
col("contact.phone").alias("phone"),
col("contact.email").alias("email")
)
df_flattened.show(truncate=False)
This will flatten the address and contact fields.
Step 2: Flattening Arrays with explode
For fields that contain arrays (like orders), you can use explode to flatten the array into individual rows.
from pyspark.sql.functions import explode
df_flattened_orders = df.select(
col("name"),
col("age"),
col("address.street").alias("street"),
col("address.city").alias("city"),
col("contact.phone").alias("phone"),
col("contact.email").alias("email"),
explode(col("orders")).alias("order")
)
# Now flatten the fields inside the "order" structure
df_final = df_flattened_orders.select(
col("name"),
col("age"),
col("street"),
col("city"),
col("phone"),
col("email"),
col("order.id").alias("order_id"),
col("order.item").alias("order_item"),
col("order.price").alias("order_price")
)
df_final.show(truncate=False)
Output
name
age
street
city
phone
email
order_id
order_item
order_price
John
30
123 Main St
New York
123-456-7890
john@example.com
1
Laptop
999.99
John
30
123 Main St
New York
123-456-7890
john@example.com
2
Mouse
49.99
Key Functions Used:
col(): Accesses columns of the DataFrame.
alias(): Renames a column.
explode(): Converts an array into multiple rows, one for each element in the array.
Generalize for Deeper Nested Structures
For deeply nested JSON structures, you can apply this process recursively by continuing to use select, alias, and explode to flatten additional layers.
Please do not hesitate to contact me if you have any questions at William . chen @ mainri.ca
In PySpark, we can read from and write to CSV files using DataFrameReader and DataFrameWriter with the csv method. Here’s a guide on how to work with CSV files in PySpark:
from pyspark.sql.types import StructType, StructField, StringType, IntegerType
# Define the schema
schema = StructType([
StructField("column1", IntegerType(), True), # Column1 is Integer, nullable
StructField("column2", StringType(), True), # Column2 is String, nullable
StructField("column3", StringType(), False) # Column3 is String, non-nullable
])
#or simple format
schema="col1 INTEGER, col2 STRING, col3 STRING, col4 INTEGER"
Example
Read CSV file with header, infer schema, and specify null value
# Read a CSV file with header, infer schema, and specify null value
df = spark.read.format("csv") \
.option("header", "true") \ # Use the first row as the header
.option("inferSchema", "true")\ # Automatically infer the schema
.option("sep", ",") \ # Specify the delimiter
.load("path/to/input_file.csv")\ # Load the file
.option("nullValue", "NULL" # Define a string representation of null
# Read multiple CSV files with header, infer schema, and specify null value
df = spark.read.format("csv") \
.option("inferSchema", "true")\
.option("sep", ",") \
.load("path/file1.csv", "path/file2.csv", "path/file3.csv")\
.option("nullValue", "NULL")
# Read folder all CSV files with header, infer schema, and specify null value
df = spark.read.format("csv") \
.option("inferSchema", "true")\
.option("sep", ",") \
.load("/path_folder/)\
.option("nullValue", "NULL")
When you want to read multiple files into a single Dataframe, if schemas are different, load files into Separate DataFrames, then take additional process to merge them together.
# Write the result DataFrame to a new CSV file
result_df.write.format("csv") \
.option("header", "true") \
.mode("overwrite") \
.save("path/to/output_directory")
# Write DataFrame to a CSV file with header, partitioning, and compression
df.write.format("csv") \
.option("header", "true") \ # Write the header
.option("compression", "gzip") \ # Use gzip compression
.partitionBy("year", "month") \ # Partition the output by specified columns
.mode("overwrite") \ # Overwrite existing data
.save("path/to/output_directory") # Specify output directory
By default, If you try to write directly to a file (e.g., name1.csv), it conflicts because Spark doesn’t generate a single file but a collection of part files in a directory.
PySpark writes data in parallel, which results in multiple part files rather than a single CSV file by default. However, you can consolidate the data into a single CSV file by performing a coalesce(1) or repartition(1) operation before writing, which reduces the number of partitions to one.
at this time, name1.csv in “dbfs:/FileStore/name1.csv” will treat as a directory, rather than a Filename. PySpark writes the single file with a random name like part-00000-<id>.csv
we need take additional step – “Rename the File to name1.csv“
# List all files in the directory
files = dbutils.fs.ls("dbfs:/FileStore/name1.csv")
# Filter for the part file
for file in files:
if file.name.startswith("part-"):
source_file = file.path # Full path to the part file
destination_file = "dbfs:/FileStore/name1.csv"
# Move and rename the file
dbutils.fs.mv(source_file, destination_file)
break
display(dbutils.fs.ls ( "dbfs:/FileStore/"))
Direct Write with Custom File Name
PySpark doesn’t natively allow specifying a custom file name directly while writing a file because it writes data in parallel using multiple partitions. However, you can achieve a custom file name with a workaround. Here’s how:
Steps:
Use coalesce(1) to combine all data into a single partition.
Save the file to a temporary location.
Rename the part file to the desired name.
# Combine all data into one partition
df.coalesce(1).write.format("csv") \
.option("header", "true") \
.mode("overwrite") \
.save("dbfs:/FileStore/temp_folder")
# Get the name of the part file
files = dbutils.fs.ls("dbfs:/FileStore/temp_folder")
for file in files:
if file.name.startswith("part-"):
part_file = file.path
break
# Move and rename the part file
dbutils.fs.mv(part_file, "dbfs:/FileStore/name1.csv")
# Remove the temporary folder
dbutils.fs.rm("dbfs:/FileStore/temp_folder", True)
Please do not hesitate to contact me if you have any questions at William . chen @mainri.ca